Automatic Classification of Microseismic Signals Based on MFCC and GMM‐HMM in Underground Mines P Peng, Z He, L Wang Shock and Vibration 2019 (1), 5803184, 2019 | 53 | 2019 |
Performance evaluation of rockburst prediction based on PSO-SVM, HHO-SVM, and MFO-SVM hybrid models J Zhou, P Yang, P Peng, M Khandelwal, Y Qiu Mining, Metallurgy & Exploration 40 (2), 617-635, 2023 | 39 | 2023 |
Automatic classification of microseismic records in underground mining: a deep learning approach P Peng, Z He, L Wang, Y Jiang IEEE Access 8, 17863-17876, 2020 | 35 | 2020 |
PickCapsNet: Capsule network for automatic P-wave arrival picking Z He, P Peng, L Wang, Y Jiang IEEE Geoscience and Remote Sensing Letters 18 (4), 617-621, 2020 | 32 | 2020 |
Accurate identification of microseismic P-and S-phase arrivals using the multi-step AIC algorithm M Zhu, L Wang, X Liu, J Zhao Journal of Applied Geophysics 150, 284-293, 2018 | 27 | 2018 |
Microseismic records classification using capsule network with limited training samples in underground mining P Peng, Z He, L Wang, Y Jiang Scientific Reports 10 (1), 13925, 2020 | 26 | 2020 |
Targeted location of microseismic events based on a 3D heterogeneous velocity model in underground mining P Peng, L Wang PLoS One 14 (2), e0212881, 2019 | 23 | 2019 |
Microseismic event location by considering the influence of the empty area in an excavated tunnel P Peng, Y Jiang, L Wang, Z He Sensors 20 (2), 574, 2020 | 20 | 2020 |
LiDAR-based local path planning method for reactive navigation in underground mines Y Jiang, P Peng, L Wang, J Wang, J Wu, Y Liu Remote Sensing 15 (2), 309, 2023 | 16 | 2023 |
Efficient and accurate mapping method of underground metal mines using mobile mining equipment and solid-state lidar J Wang, L Wang, P Peng, Y Jiang, J Wu, Y Liu Measurement 221, 113581, 2023 | 14 | 2023 |
露天矿配矿优化方法研究 ① 吴丽春, 王李管, 彭平安, 王喆, 陈忠强 矿冶工程 32 (4), 2012 | 12 | 2012 |
A novel wavelet selection method for seismic signal intelligent processing Z He, S Ma, L Wang, P Peng Applied Sciences 12 (13), 6470, 2022 | 11 | 2022 |
Enhancing seismic p-wave arrival picking by target-oriented detection of the local windows using faster-rcnn Z He, P Peng, L Wang, Y Jiang IEEE Access 8, 141733-141747, 2020 | 10 | 2020 |
基于改进的 STA/LTA 方法的微地震 P 波自动拾取技术 刘晓明, 赵君杰, 王运敏, 彭平安 东北大学学报 (自然科学版) 38 (5), 740, 2017 | 9 | 2017 |
3DMRT: A Computer Package for 3D Model‐Based Seismic Wave Propagation P Peng, L Wang Seismological Research Letters 90 (5), 2039-2045, 2019 | 8 | 2019 |
Automated locating mining-induced microseismicity without arrival picking by weighted STA/LTA traces stacking Y Jiang, P Peng, L Wang, Z He Sustainability 12 (9), 3665, 2020 | 6 | 2020 |
An automatic identification and classification method of complex microseismic signals in mines based on Mel-frequency cepstral coefficients Z He, PA Peng, Z Liao J. Saf. Sci. Technol 14, 41-47, 2018 | 6 | 2018 |
PSSegNet: segmenting the P-and S-phases in microseismic signals through deep learning Z He, X Xu, D Rao, P Peng, J Wang, S Tian Mathematics 12 (1), 130, 2023 | 5 | 2023 |
Enhancing Microseismic Signal Classification in Metal Mines Using Transformer-Based Deep Learning P Peng, R Lei, J Wang Sustainability 15 (20), 14959, 2023 | 5 | 2023 |
A Fast ray-tracing method for locating mining-induced seismicity by considering underground voids P Peng, Y Jiang, L Wang, Z He, S Tu Applied Sciences 10 (19), 6763, 2020 | 5 | 2020 |