Semantics derived automatically from language corpora contain human-like moral choices S Jentzsch, P Schramowski, C Rothkopf, K Kersting Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 37-44, 2019 | 84 | 2019 |
ChatGPT is fun, but it is not funny! Humor is still challenging Large Language Models S Jentzsch, K Kersting arXiv preprint arXiv:2306.04563, 2023 | 66 | 2023 |
The moral choice machine P Schramowski, C Turan, S Jentzsch, C Rothkopf, K Kersting Frontiers in artificial intelligence 3, 36, 2020 | 46 | 2020 |
Gender Bias in BERT--Measuring and Analysing Biases through Sentiment Rating in a Realistic Downstream Classification Task S Jentzsch, C Turan arXiv preprint arXiv:2306.15298, 2023 | 39 | 2023 |
Conversational interfaces for explainable AI: a human-centred approach SF Jentzsch, S Höhn, N Hochgeschwender Explainable, Transparent Autonomous Agents and Multi-Agent Systems: First …, 2019 | 36 | 2019 |
BERT has a Moral Compass: Improvements of ethical and moral values of machines P Schramowski, C Turan, S Jentzsch, C Rothkopf, K Kersting arXiv preprint arXiv:1912.05238, 2019 | 31 | 2019 |
Don't forget your roots! using provenance data for transparent and explainable development of machine learning models SF Jentzsch, N Hochgeschwender 2019 34th IEEE/ACM International Conference on Automated Software …, 2019 | 20 | 2019 |
Requirements for explainability and acceptance of artificial intelligence in collaborative work S Theis, S Jentzsch, F Deligiannaki, C Berro, AP Raulf, C Bruder International conference on human-computer interaction, 355-380, 2023 | 19 | 2023 |
Style vectors for steering generative large language model K Konen, S Jentzsch, D Diallo, P Schütt, O Bensch, RE Baff, D Opitz, ... arXiv preprint arXiv:2402.01618, 2024 | 13 | 2024 |
A qualitative study of Machine Learning practices and engineering challenges in Earth Observation S Jentzsch, N Hochgeschwender it-Information Technology 63 (4), 235-247, 2021 | 6 | 2021 |
AI Assistants for Spaceflight Procedures: Combining Generative Pre-Trained Transformer and Retrieval-Augmented Generation on Knowledge Graphs With Augmented Reality Cues O Bensch, L Bensch, T Nilsson, F Saling, B Bewer, S Jentzsch, T Hecking, ... arXiv preprint arXiv:2409.14206, 2024 | | 2024 |
Zum Nutzen textgenerierender KI im Kontext der Unterrichtsplanung von Sportlehrkräften K Rehlinghaus, S Jentzsch, S Reuker Sportunterricht 73 (12), 530, 2024 | | 2024 |
Prompt Engineering for Steering Emotions in Large Language Model (LLM) Responses K Sahler, SF Jentzsch, D Retkowitz Hochschule Niederrhein, 2024 | | 2024 |
Requirements for Explainability, Traceability, and Acceptance of Artificial Intelligence in Collaboration S Theis, S Jentzsch, F Deligiannaki, C Berro, AP Raulf, C Bruder 15th International Conference, VAMR 2023, Held as Part of the 25th HCI …, 2023 | | 2023 |
Gute KI, böse KI-Kann Künstliche Intelligenz (un) moralisch sein? SF Jentzsch | | 2022 |
KÜNSTLICHE INTELLIGENZ-Was verbirgt sich dahinter? SF Jentzsch | | 2022 |
Bereinigung der Trainingsdaten für faires Machine Learning: Anwendung eines Genetischen Algorithmus L Hilger, M Leuschel, SF Jentzsch Heinrich Heine Universität Düsseldorf, 2022 | | 2022 |
Implementing FAIR through a distributed data infrastructure C Hoyer-Klick, J Frey, U Frey, H Gardian, A Giannousakis, J Göpfert, ... | | 2021 |
Distributed Data Infrastructures in Energy Systems Analysis C Hoyer-Klick, J Frey, UJ Frey, A Giannusakis, T Hecking, S Hellmann, ... | | 2020 |