متابعة
Nicholas Rhinehart
Nicholas Rhinehart
Assistant Professor, University of Toronto
بريد إلكتروني تم التحقق منه على utoronto.ca - الصفحة الرئيسية
عنوان
عدد مرات الاقتباسات
عدد مرات الاقتباسات
السنة
PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings
N Rhinehart, R McAllister, K Kitani, S Levine
Proceedings of the IEEE International Conference on Computer Vision, 2019
4532019
R2P2: A Reparameterized Pushforward Policy for Diverse, Precise Generative Path Forecasting
N Rhinehart, KM Kitani, P Vernaza
Proceedings of the European Conference on Computer Vision (ECCV), 772-788, 2018
2852018
Can autonomous vehicles identify, recover from, and adapt to distribution shifts?
A Filos, P Tigkas, R McAllister, N Rhinehart, S Levine, Y Gal
International Conference on Machine Learning, 3145-3153, 2020
2352020
N2N learning: Network to Network Compression via Policy Gradient Reinforcement Learning
A Ashok, N Rhinehart, F Beainy, KM Kitani
International Conference on Learning Representations (ICLR), 2018
2232018
Deep Imitative Models for Flexible Inference, Planning, and Control
N Rhinehart, R McAllister, S Levine
International Conference on Learning Representations (ICLR), 2020
1672020
First-Person Activity Forecasting with Online Inverse Reinforcement Learning
N Rhinehart, KM Kitani
The IEEE International Conference on Computer Vision (ICCV), 3716-3725, 2017
1672017
Parrot: Data-driven behavioral priors for reinforcement learning
A Singh, H Liu, G Zhou, A Yu, N Rhinehart, S Levine
arXiv preprint arXiv:2011.10024, 2020
1602020
Conservative safety critics for exploration
H Bharadhwaj, A Kumar, N Rhinehart, S Levine, F Shkurti, A Garg
arXiv preprint arXiv:2010.14497, 2020
1562020
Ving: Learning open-world navigation with visual goals
D Shah, B Eysenbach, G Kahn, N Rhinehart, S Levine
2021 IEEE International Conference on Robotics and Automation (ICRA), 13215 …, 2021
992021
Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demonstrations using Directed Information
A Sharma, M Sharma, N Rhinehart, KM Kitani
International Conference on Learning Representations (ICLR), 2019
902019
Inverting the pose forecasting pipeline with SPF2: Sequential pointcloud forecasting for sequential pose forecasting
X Weng, J Wang, S Levine, K Kitani, N Rhinehart
Conference on robot learning, 11-20, 2021
74*2021
Rapid exploration for open-world navigation with latent goal models
D Shah, B Eysenbach, G Kahn, N Rhinehart, S Levine
arXiv preprint arXiv:2104.05859, 2021
682021
Learning Action Maps of Large Environments Via First-Person Vision
N Rhinehart, KM Kitani
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
552016
SMiRL: Surprise Minimizing RL in Dynamic Environments
G Berseth, D Geng, C Devin, N Rhinehart, C Finn, D Jayaraman, S Levine
arXiv preprint arXiv:1912.05510, 2019
54*2019
The waymo open sim agents challenge
N Montali, J Lambert, P Mougin, A Kuefler, N Rhinehart, M Li, C Gulino, ...
Advances in Neural Information Processing Systems 36, 59151-59171, 2023
482023
Predictive-state decoders: Encoding the future into recurrent networks
A Venkatraman*, N Rhinehart*, W Sun, L Pinto, M Hebert, B Boots, ...
Advances in Neural Information Processing Systems, 1172-1183, 2017
452017
First-Person Activity Forecasting from Video with Online Inverse Reinforcement Learning
N Rhinehart, K Kitani
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018
362018
Contingencies from observations: Tractable contingency planning with learned behavior models
N Rhinehart, J He, C Packer, MA Wright, R McAllister, JE Gonzalez, ...
2021 IEEE International Conference on Robotics and Automation (ICRA), 13663 …, 2021
352021
Generative Hybrid Representations for Activity Forecasting with No-Regret Learning
J Guan, Y Yuan, KM Kitani, N Rhinehart
arXiv preprint arXiv:1904.06250, 2019
342019
Human-Interactive Subgoal Supervision for Efficient Inverse Reinforcement Learning
X Pan, E Ohn-Bar, N Rhinehart, Y Xu, Y Shen, KM Kitani
Proceedings of the 17th International Conference on Autonomous Agents and …, 2018
212018
يتعذر على النظام إجراء العملية في الوقت الحالي. عاود المحاولة لاحقًا.
مقالات 1–20