Следене
Zhai Jingjing
Zhai Jingjing
Institute of Genomic Diversity, Cornell University
Потвърден имейл адрес: cornell.edu
Заглавие
Позовавания
Позовавания
Година
A deep convolutional neural network approach for predicting phenotypes from genotypes
W Ma, Z Qiu, J Song, J Li, Q Cheng, J Zhai, C Ma
Planta 248, 1307-1318, 2018
2112018
Transcriptome-Wide Annotation of m5C RNA Modifications Using Machine Learning
J Song, J Zhai, E Bian, Y Song, J Yu, C Ma
Frontiers in plant science 9, 519, 2018
592018
miRLocator: machine learning-based prediction of mature microRNAs within plant pre-miRNA sequences
H Cui, J Zhai, C Ma
PLoS One 10 (11), e0142753, 2015
352015
PEA: an integrated R toolkit for plant epitranscriptome analysis
J Zhai, J Song, Q Cheng, Y Tang, C Ma
Bioinformatics 34 (21), 3747-3749, 2018
332018
CAFU: a galaxy framework for exploring unmapped RNA-Seq data
S Chen, C Ren, J Zhai, J Yu, X Zhao, Z Li, T Zhang, W Ma, Z Han, C Ma
Briefings in Bioinformatics 21 (2), 676-686, 2020
132020
deepEA: a containerized web server for interactive analysis of epitranscriptome sequencing data
J Zhai, J Song, T Zhang, S Xie, C Ma
Plant Physiology 185 (1), 29-33, 2021
122021
A meta-analysis based method for prioritizing candidate genes involved in a pre-specific function
J Zhai, Y Tang, H Yuan, L Wang, H Shang, C Ma
Frontiers in Plant Science 7, 1914, 2016
122016
Interactive web-based annotation of plant MicroRNAs with iwa-miRNA
T Zhang, J Zhai, X Zhang, L Ling, M Li, S Xie, M Song, C Ma
Genomics, Proteomics and Bioinformatics 20 (3), 557-567, 2022
112022
easyMF: a web platform for matrix factorization-based gene discovery from large-scale transcriptome data
W Ma, S Chen, Y Qi, M Song, J Zhai, T Zhang, S Xie, G Wang, C Ma
Interdisciplinary Sciences: Computational Life Sciences 14 (3), 746-758, 2022
82022
Cross-species modeling of plant genomes at single nucleotide resolution using a pre-trained DNA language model
J Zhai, A Gokaslan, Y Schiff, A Berthel, ZY Liu, WY Lai, ZR Miller, ...
bioRxiv, 2024
72024
Global hypermethylation of the N6-methyladenosine RNA modification associated with apple heterografting
J Xu, J He, B Hu, N Hou, J Guo, C Wang, X Li, Z Li, J Zhai, T Zhang, C Ma, ...
Plant Physiology 193 (4), 2513-2537, 2023
42023
Exploring transcriptional switches from pairwise, temporal and population RNA-Seq data using deepTS
Z Qiu, S Chen, Y Qi, C Liu, J Zhai, S Xie, C Ma
Briefings in Bioinformatics 22 (3), bbaa137, 2021
42021
miRLocator: a Python implementation and web server for predicting miRNAs from pre-miRNA sequences
T Zhang, L Ju, J Zhai, Y Song, J Song, C Ma
Plant MicroRNAs: Methods and Protocols, 89-97, 2019
42019
Extensive genome evolution distinguishes maize within a stable tribe of grasses
MC Stitzer, AS Seetharam, A Scheben, SK Hsu, AJ Schulz, ...
bioRxiv, 2025.01. 22.633974, 2025
32025
Fishing for a reelGene: evaluating gene models with evolution and machine learning
AJ Schulz, J Zhai, T AuBuchon-Elder, M El-Walid, TH Ferebee, ...
BioRxiv, 2023.09. 19.558246, 2023
32023
PEA-m6A: an ensemble learning framework for accurately predicting N6-methyladenosine modifications in plants
M Song, J Zhao, C Zhang, C Jia, J Yang, H Zhao, J Zhai, B Lei, S Tao, ...
Plant Physiology 195 (2), 1200-1213, 2024
22024
The maize recombination landscape evolved during domestication
R Epstein, JJ Wheeler, M Hubisz, Q Sun, R Bukowski, J Zhai, WY Lai, ...
bioRxiv, 2024.11. 04.621928, 2024
2024
Effects of dietary supplementation of soybean protein hydrolysate on production performance and nutrients utilization rate in weaned piglets.
WD Liu, P Cheng, ZC Wang, LG Huang, QY Wang, HX Cheng, MD Zhang, ...
2020
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–18