Следене
Zihang Xiang
Zihang Xiang
Потвърден имейл адрес: kaust.edu.sa - Начална страница
Заглавие
Позовавания
Позовавания
Година
PPML-Omics: a privacy-preserving federated machine learning method protects patients’ privacy in omic data
J Zhou, S Chen, Y Wu, H Li, B Zhang, L Zhou, Y Hu, Z Xiang, Z Li, N Chen, ...
Science Advances 10 (5), eadh8601, 2024
282024
Practical differentially private and byzantine-resilient federated learning
Z Xiang, T Wang, W Lin, D Wang
Proceedings of the ACM on Management of Data 1 (2), 1-26, 2023
192023
A theory to instruct differentially-private learning via clipping bias reduction
H Xiao==, Z Xiang==, D Wang, S Devadas
2023 IEEE Symposium on Security and Privacy (SP), 2170-2189, 2023
172023
Bidirectional modular Dual Active Bridge (DAB) converter using multi-limb-core transformer with symmetrical LC series resonant tank based on cascaded converters in solid state …
U Khalid, MM Khan, Z Xiang, Y Jianyang
2017 China International Electrical and Energy Conference (CIEEC), 627-632, 2017
162017
Privacy-preserving sparse generalized eigenvalue problem
L Hu==, Z Xiang==, J Liu, D Wang
International Conference on Artificial Intelligence and Statistics, 5052-5062, 2023
92023
Differentially private non-convex learning for multi-layer neural networks
H Shen, CL Wang, Z Xiang, Y Ying, D Wang
arXiv preprint arXiv:2310.08425, 2023
82023
Preserving node-level privacy in graph neural networks
Z Xiang, T Wang, D Wang
2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2024., 2024
72024
A DC link capacitors' voltage balancing method in unidirectional cascaded H-bridge converter using multi-limb-core (MLC) transformer
Z Xiang, MM Khan, U Khalid, J Xu
2017 China International Electrical and Energy Conference (CIEEC), 606-611, 2017
52017
Di Wang, and Srinivas Devadas. 2023. A theory to instruct differentially-private learning via clipping bias reduction
H Xiao, Z Xiang
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2170-2189, 0
5
Has approximate machine unlearning been evaluated properly? from auditing to side effects
CL Wang, Q Li, Z Xiang, D Wang
arXiv e-prints, arXiv: 2403.12830, 2024
42024
Revisiting Differentially Private Hyper-parameter Tuning
Z Xiang, T Wang, C Wang, D Wang
arXiv preprint arXiv:2402.13087, 2024
4*2024
Nearly Optimal Rates of Privacy-preserving Sparse Generalized Eigenvalue Problem
L Hu==, Z Xiang==, J Liu, D Wang
IEEE Transactions on Knowledge and Data Engineering, 2023
12023
Towards User-level Private Reinforcement Learning with Human Feedback
J Zhang, M Lei, M Ding, M Li, Z Xiang, D Xu, J Xu, D Wang
arXiv preprint arXiv:2502.17515, 2025
2025
Privacy Audit as Bits Transmission:(Im) possibilities for Audit by One Run
Z Xiang, T Wang, D Wang
arXiv preprint arXiv:2501.17750, 2025
2025
Private Stochastic Convex Optimization with Tysbakov Noise Condition and Large Lipschitz Constant
D Xu, M Ding, Z Xiang, J Xu, D Wang
FlashDP: Memory-Efficient and High-Throughput DP-SGD Training for Large Language Models
L Wang, J Wang, J Ren, Z Xiang, DE Keyes, D Wang
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–16