Is GPT-3 a Good Data Annotator? B Ding, C Qin, L Liu, YK Chia, S Joty, B Li, L Bing ACL 2023, 2022 | 242 | 2022 |
On the effectiveness of adapter-based tuning for pretrained language model adaptation R He, L Liu, H Ye, Q Tan, B Ding, L Cheng, JW Low, L Bing, L Si ACL 2021, 2021 | 212 | 2021 |
DAGA: Data augmentation with a generation approach for low-resource tagging tasks B Ding, L Liu, L Bing, C Kruengkrai, TH Nguyen, S Joty, L Si, C Miao EMNLP 2020, 2020 | 176 | 2020 |
Chain of Knowledge: A Framework for Grounding Large Language Models with Structured Knowledge Bases X Li, R Zhao, YK Chia, B Ding, L Bing, S Joty, S Poria ICLR 2024, 2023 | 127* | 2023 |
MulDA: A multilingual data augmentation framework for low-resource cross-lingual NER L Liu, B Ding, L Bing, S Joty, L Si, C Miao ACL 2021, 5834-5846, 2021 | 80 | 2021 |
Data augmentation using llms: Data perspectives, learning paradigms and challenges B Ding, C Qin, R Zhao, T Luo, X Li, G Chen, W Xia, J Hu, AT Luu, S Joty ACL 2024, 2024 | 75 | 2024 |
Generative AI: A systematic review using topic modelling techniques P Gupta, B Ding, C Guan, D Ding Data and Information Management 8 (2), 100066, 2024 | 66 | 2024 |
Retrieving multimodal information for augmented generation: A survey R Zhao, H Chen, W Wang, F Jiao, XL Do, C Qin, B Ding, X Guo, M Li, X Li, ... EMNLP 2023, 2023 | 66 | 2023 |
Globalwoz: Globalizing multiwoz to develop multilingual task-oriented dialogue systems B Ding, J Hu, L Bing, SM Aljunied, S Joty, L Si, C Miao ACL 2022, 2021 | 40 | 2021 |
Can chatgpt-like generative models guarantee factual accuracy? on the mistakes of new generation search engines R Zhao, X Li, YK Chia, B Ding, L Bing Technical Report, 2023 | 32 | 2023 |
Unraveling the landscape of large language models: a systematic review and future perspectives Q Ding, D Ding, Y Wang, C Guan, B Ding Journal of Electronic Business & Digital Economics 3 (1), 3-19, 2023 | 22 | 2023 |
How much are llms contaminated? a comprehensive survey and the llmsanitize library M Ravaut, B Ding, F Jiao, H Chen, X Li, R Zhao, C Qin, C Xiong, S Joty arXiv e-prints, arXiv: 2404.00699, 2024 | 15 | 2024 |
Exploring Self-supervised Logic-enhanced Training for Large Language Models F Jiao, Z Teng, B Ding, Z Liu, NF Chen, S Joty NAACL 2024, 2023 | 14* | 2023 |
Panda LLM: Training Data and Evaluation for Open-Sourced Chinese Instruction-Following Large Language Models F Jiao, B Ding, T Luo, Z Mo Technical Report, 2023 | 9 | 2023 |
Data augmentation using large language models: Data perspectives, learning paradigms and challenges B Ding, C Qin, R Zhao, T Luo, X Li, G Chen, W Xia, J Hu, AT Luu, S Joty arXiv preprint arXiv:2403.02990, 2024 | 7 | 2024 |
How Much are Large Language Models Contaminated? A Comprehensive Survey and the LLMSanitize Library M Ravaut, B Ding, F Jiao, H Chen, X Li, R Zhao, C Qin, C Xiong, S Joty arXiv preprint arXiv:2404.00699, 2024 | 4 | 2024 |
Improving in-context learning via bidirectional alignment SJ Chengwei Qin, Wenhan Xia, Fangkai Jiao, Chen Chen, Yuchen Hu, Bosheng Ding arXiv preprint arXiv:2312.17055, 2023 | 4 | 2023 |
Relevant or Random: Can LLMs Truly Perform Analogical Reasoning? C Qin, W Xia, T Wang, F Jiao, Y Hu, B Ding, R Chen, S Joty arXiv preprint arXiv:2404.12728, 2024 | 3 | 2024 |
Demystify Adult Learning: A Social Network and Large Language Model Assisted Approach F Liu, B Ding, C Guan, Z Wei, D Niyato, J Tan AIoT 2024, 2024 | 2 | 2024 |
StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs H Chen, F Jiao, M Ravaut, N Farruque, XP Nguyen, C Qin, M Dey, B Ding, ... arXiv preprint arXiv:2412.18011, 2024 | | 2024 |