Meta-dataset: A dataset of datasets for learning to learn from few examples E Triantafillou, T Zhu, V Dumoulin, P Lamblin, U Evci, K Xu, R Goroshin, ... arXiv preprint arXiv:1903.03096, 2019 | 758 | 2019 |
DeepMDP: Learning Continuous Latent Space Models for Representation Learning C Gelada, S Kumar, J Buckman, O Nachum, MG Bellemare arXiv preprint arXiv:1906.02736, 2019 | 367 | 2019 |
Dopamine: A research framework for deep reinforcement learning PS Castro, S Moitra, C Gelada, S Kumar, MG Bellemare arXiv preprint arXiv:1812.06110, 2018 | 313 | 2018 |
The importance of pessimism in fixed-dataset policy optimization J Buckman, C Gelada, MG Bellemare arXiv preprint arXiv:2009.06799, 2020 | 164 | 2020 |
Hyperbolic discounting and learning over multiple horizons W Fedus, C Gelada, Y Bengio, MG Bellemare, H Larochelle arXiv preprint arXiv:1902.06865, 2019 | 129 | 2019 |
Off-policy deep reinforcement learning by bootstrapping the covariate shift C Gelada, MG Bellemare Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 3647-3655, 2019 | 122 | 2019 |
Dopamine: A framework for flexible Reinforcement Learning research PS Castro, S Moitra, C Gelada, S Kumar, MG Bellemare | | |