Segueix
Davide Chicco
Davide Chicco
Università di Milano-Bicocca & University of Toronto
Correu electrònic verificat a utoronto.ca - Pàgina d'inici
Títol
Citada per
Citada per
Any
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
D Chicco, G Jurman
BMC Genomics 21 (6), 1-13, 2020
52842020
The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
D Chicco, MJ Warrens, G Jurman
PeerJ Computer Science 7, e623, 2021
33502021
Bioconda: sustainable and comprehensive software distribution for the life sciences
B Grüning, R Dale, A Sjödin, BA Chapman, J Rowe, CH Tomkins-Tinch, ...
Nature Methods 15 (7), 475, 2018
12372018
Ten quick tips for machine learning in computational biology
D Chicco
BioData Mining 10 (35), 1-17, 2017
10752017
The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation
D Chicco, N Tötsch, G Jurman
BioData Mining 14 (13), 1-22, 2021
8122021
Siamese neural networks: an overview
D Chicco
Artificial Neural Networks (3rd edition), Methods in Molecular Biology 2190 …, 2020
7792020
Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone
D Chicco, G Jurman
BMC Medical Informatics and Decision Making 20 (16), 1-16, 2020
6262020
The Matthews correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier score in binary classification assessment
D Chicco, MJ Warrens, G Jurman
IEEE Access 9, 78368-78381, 2021
3312021
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
MP Menden, D Wang, MJ Mason, B Szalai, KC Bulusu, Y Guan, T Yu, ...
Nature Communications 10 (1), 2674, 2019
3262019
The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification
D Chicco, G Jurman
BioData Mining 16 (4), 1-23, 2023
2792023
Deep autoencoder neural networks for Gene Ontology annotation predictions
D Chicco, P Sadowski, P Baldi
Proceedings of ACM BCB 2014 – the 5th ACM Conference on Bioinformatics …, 2014
2562014
Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality
S Shin, PC Austin, HJ Ross, H Abdel‐Qadir, C Freitas, G Tomlinson, ...
ESC Heart Failure 8 (1), 106-115, 2020
1442020
Supervised deep learning embeddings for the prediction of cervical cancer diagnosis
K Fernandes, D Chicco, JS Cardoso, J Fernandes
PeerJ Computer Science 4 (e154), 2018
1112018
Theadvantages of the matthews correlation co-heXphotogenic: Generalization of Chest X-ray Models to to Photos efficient (mcc) over f1 score and accuracyin binary classification …
D Chicco, G Jurman
BMCgenomics 21 (1), 6, 2020
1092020
The benefits of the Matthews correlation coefficient (MCC) over the diagnostic odds ratio (DOR) in binary classification assessment
D Chicco, V Starovoitov, G Jurman
IEEE Access 9, 47112-47124, 2021
962021
Computational prediction of diagnosis and feature selection on mesothelioma patient health records
D Chicco, C Rovelli
PLOS One 14 (1), e0208737, 2019
742019
Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach
R Kueffner, N Zach, M Bronfeld, R Norel, N Atassi, V Balagurusamy, ...
Scientific Reports 9 (1), 690, 2019
722019
The MCC-F1 curve: a performance evaluation technique for binary classification
C Cao, D Chicco, MM Hoffman
arXiv preprint arXiv:2006.11278, 2020
572020
Survival prediction of patients with sepsis from age, sex, and septic episode number alone
D Chicco, G Jurman
Scientific Reports 10 (17156), 1-12, 2020
562020
Nine quick tips for pathway enrichment analysis
D Chicco, G Agapito
PLOS Computational Biology 18 (8), e1010348, 2022
552022
En aquests moments el sistema no pot dur a terme l'operació. Torneu-ho a provar més tard.
Articles 1–20