Segueix
Pim de Haan
Pim de Haan
CuspAI
Correu electrònic verificat a cusp.ai - Pàgina d'inici
Títol
Citada per
Citada per
Any
Causal confusion in imitation learning
P De Haan, D Jayaraman, S Levine
NeurIPS 2019, 2019
3762019
Weakly supervised causal representation learning
J Brehmer*, P De Haan*, P Lippe, T Cohen
NeurIPS 2022, 2022
1372022
Gauge equivariant mesh cnns: Anisotropic convolutions on geometric graphs
P De Haan, M Weiler, T Cohen, M Welling
ICLR 2021, 2020
1342020
Explorations in Homeomorphic Variational Auto-Encoding
L Falorsi, P de Haan, TR Davidson, N De Cao, M Weiler, P Forré, ...
ICML 2018 workshop on Theoretical Foundations and Applications of Deep …, 2018
1262018
Natural graph networks
P de Haan, T Cohen, M Welling
NeurIPS 2020, 2020
1002020
Reparameterizing Distributions on Lie Groups
L Falorsi, P de Haan, TR Davidson, P Forré
AISTATS 2019, 2019
952019
Geometric Algebra Transformers
J Brehmer*, P De Haan*, S Behrends, T Cohen
NeurIPS 2023, 2023
552023
Mesh neural networks for SE (3)-equivariant hemodynamics estimation on the artery wall
J Suk, P de Haan, P Lippe, C Brune, JM Wolterink
Computers in Biology and Medicine, 108328, 2024
49*2024
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
M Gerdes*, P de Haan*, C Rainone, R Bondesan, MCN Cheng
SciPost Physics, 2023
28*2023
EDGI: Equivariant Diffusion for Planning with Embodied Agents
J Brehmer, J Bose, P De Haan, T Cohen
NeurIPS 2023, 2023
282023
Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows
P de Haan, C Rainone, M Cheng, R Bondesan
NeurIPS 2021 workshop on Machine Learning for Physical Systems, 2021
272021
Covariance in physics and convolutional neural networks
MCN Cheng, V Anagiannis, M Weiler, P de Haan, TS Cohen, M Welling
arXiv preprint arXiv:1906.02481, 2019
192019
Rigid body flows for sampling molecular crystal structures
J Köhler, M Invernizzi, P de Haan, F Noé
ICML 2023, 2023
182023
Euclidean, Projective, Conformal: Choosing a Geometric Algebra for Equivariant Transformers
P De Haan, T Cohen, J Brehmer
AISTATS 2024, 2023
112023
Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics
J Spinner, V Bresó, P de Haan, T Plehn, J Thaler, J Brehmer
NeurIPS 2024, 2024
102024
Topological Constraints on Homeomorphic Auto-Encoding
P de Haan, L Falorsi
NeurIPS 2018 Workshop on Integration of Deep Learning Theories, 2018
102018
Deconfounding Imitation Learning with Variational Inference
R Vuorio*, P De Haan*, J Brehmer, H Ackermann, D Dijkman, T Cohen
Transactions on Machine Learning Research, 2024
8*2024
A Lorentz-Equivariant Transformer for All of the LHC
J Brehmer, V Bresó, P de Haan, T Plehn, H Qu, J Spinner, J Thaler
arXiv preprint arXiv:2411.00446, 2024
52024
FoMo Rewards: Can we cast foundation models as reward functions?
E Singh Lubana, J Brehmer, P de Haan, T Cohen
arXiv e-prints, arXiv: 2312.03881, 2023
3*2023
Does equivariance matter at scale?
J Brehmer, S Behrends, P de Haan, T Cohen
arXiv preprint arXiv:2410.23179, 2024
22024
En aquests moments el sistema no pot dur a terme l'operació. Torneu-ho a provar més tard.
Articles 1–20