Entropy dissipation and long-range interactions R Alexandre, L Desvillettes, C Villani, B Wennberg Archive for rational mechanics and analysis 152, 327-355, 2000 | 351 | 2000 |
On the Boltzmann equation for long‐range interactions R Alexandre, C Villani Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2002 | 254 | 2002 |
Well-posedness of the Prandtl equation in Sobolev spaces R Alexandre, YG Wang, CJ Xu, T Yang Journal of the American Mathematical Society 28 (3), 745-784, 2015 | 243 | 2015 |
On the Landau approximation in plasma physics R Alexandre, C Villani Annales de l'Institut Henri Poincaré C, Analyse non linéaire 21 (1), 61-95, 2004 | 190 | 2004 |
The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential R Alexandre, Y Morimoto, S Ukai, CJ Xu, T Yang Journal of Functional Analysis 262 (3), 915-1010, 2012 | 179 | 2012 |
Regularizing effect and local existence for the non-cutoff Boltzmann equation R Alexandre, Y Morimoto, S Ukai, CJ Xu, T Yang Archive for rational mechanics and analysis 198, 39-123, 2010 | 156 | 2010 |
Global existence and full regularity of the Boltzmann equation without angular cutoff R Alexandre, Y Morimoto, S Ukai, CJ Xu, T Yang Communications in Mathematical Physics 304, 513-581, 2011 | 148 | 2011 |
The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions R Alexandre, Y Morimoto, S Ukai, CJ Xu, T Yang Archive for rational mechanics and analysis 202, 599-661, 2011 | 108 | 2011 |
The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential R Alexandre, Y Morimoto, S Ukai, CJ Xu, T Yang Analysis and Applications 9 (02), 113-134, 2011 | 106 | 2011 |
A review of Boltzmann equation with singular kernels R Alexandre Kinet. Relat. Models 2 (4), 551-646, 2009 | 79 | 2009 |
Analysis of intrinsic mode functions: A PDE approach SD El Hadji, R Alexandre, AO Boudraa IEEE signal processing letters 17 (4), 398-401, 2009 | 73 | 2009 |
Littlewood–paley theory and regularity issues in boltzmann homogeneous equations i: Non-cutoff case and maxwellian molecules R Alexandre, MEL SAFADI Mathematical Models and Methods in Applied Sciences 15 (06), 907-920, 2005 | 68 | 2005 |
Uncertainty principle and kinetic equations R Alexandre, Y Morimoto, S Ukai, CJ Xu, T Yang Journal of Functional Analysis 255 (8), 2013-2066, 2008 | 64 | 2008 |
Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff R Alexandre, Y Morimoto, S Ukai, CJ Xu, T Yang Kyoto Journal of Mathematics 52 (3), 433-463, 2012 | 61 | 2012 |
Local existence with mild regularity for the Boltzmann equation R Alexandre, Y Morimoto, S Ukai, CJ Xu, T Yang Kinet. Relat. Models 6 (4), 1011-1041, 2013 | 60 | 2013 |
Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff R Alexandre, F Hérau, WX Li Journal de Mathématiques Pures et Appliquées 126, 1-71, 2019 | 54 | 2019 |
Some a priori estimates for the homogeneous Landau equation with soft potentials R Alexandre, J Liao, C Lin arXiv preprint arXiv:1302.1814, 2013 | 48 | 2013 |
Gaussian beams summation for the wave equation in a convex domain S Bougacha, JL Akian, R Alexandre | 45 | 2009 |
Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equation II. Non cuttof case and non maxwellian molecules R Alexandre, M El Safadi | 40 | 2007 |
Around 3D Boltzmann non linear operator without angular cutoff, a new formulation R Alexandre ESAIM: Mathematical Modelling and Numerical Analysis 34 (3), 575-590, 2000 | 37 | 2000 |