Segueix
Travis Kessler
Travis Kessler
Research Engineer at AIMdyn, Inc.
Correu electrònic verificat a student.uml.edu - Pàgina d'inici
Títol
Citada per
Citada per
Any
Artificial neural network based predictions of cetane number for furanic biofuel additives
T Kessler, ER Sacia, AT Bell, JH Mack
Fuel 206, 171-179, 2017
962017
Application of a rectified linear unit (ReLU) based artificial neural network to cetane number predictions
T Kessler, G Dorian, JH Mack
Internal combustion engine division fall technical conference 58318, V001T02A006, 2017
312017
A comparison of computational models for predicting yield sooting index
T Kessler, PCS John, J Zhu, CS McEnally, LD Pfefferle, JH Mack
Proceedings of the Combustion Institute 38 (1), 1385-1393, 2021
292021
ECNet: Large scale machine learning projects for fuel property prediction
T Kessler, JH Mack
Journal of Open Source Software 2 (17), 401, 2017
132017
Predicting the cetane number of furanic biofuel candidates using an improved artificial neural network based on molecular structure
T Kessler, ER Sacia, AT Bell, JH Mack
Internal Combustion Engine Division Fall Technical Conference 50503, V001T02A010, 2016
92016
Screening compounds for fast pyrolysis and catalytic biofuel upgrading using artificial neural networks
T Kessler, T Schwartz, HW Wong, JH Mack
Internal Combustion Engine Division Fall Technical Conference 59346, V001T02A007, 2019
82019
Artificial neural network models for octane number and octane sensitivity: a quantitative structure property relationship approach to fuel design
A SubLaban, TJ Kessler, N Van Dam, JH Mack
Journal of energy resources technology 145 (10), 102302, 2023
62023
CO2 and HDPE Upcycling: A Plasma Catalysis Alternative
F Gorky, A Nambo, TJ Kessler, JH Mack, ML Carreon
Industrial & Engineering Chemistry Research 62 (46), 19571-19584, 2023
52023
Evaluating Diesel/Biofuel Blends Using Artificial Neural Networks and Linear/Nonlinear Equations
T Kessler, T Schwartz, HW Wong, JH Mack
Internal Combustion Engine Division Fall Technical Conference 85512, V001T04A009, 2021
32021
Predicting the Cetane Number, Yield Sooting Index, Kinematic Viscosity, and Cloud Point for Catalytically Upgraded Pyrolysis Oil Using Artificial Neural Networks
T Kessler, T Schwartz, HW Wong, JH Mack
Internal Combustion Engine Division Fall Technical Conference 84034, V001T02A006, 2020
32020
ECabc: A feature tuning program focused on Artificial Neural Network hyperparameters
S Sharma, H Gelaf-Romer, T Kessler, JH Mack
Journal of Open Source Software 4 (39), 2019
32019
Predicting the Cetane Number, Sooting Tendency, and Energy Density of Terpene Fuel Additives
T Kessler, A SubLaban, JH Mack
Internal Combustion Engine Division Fall Technical Conference 86540, V001T02A011, 2022
12022
Analysis of Inlier and Outlier Compounds with Respect to Artificial Neural Network Cetane Number Prediction Accuracy
T Kessler, A SubLaban, JH Mack
University of Massachusetts Lowell, 2022
12022
Predictive Modeling and Statistical Evaluation of Chemical Properties Relevant to the Combustion of Alternative Fuels and Fuel Blends
TJ Kessler
University of Massachusetts Lowell, 2023
2023
Prediction of Research/Motor Octane Number and Octane Sensitivity Using Artificial Neural Networks
TJ Kessler, C Hudson, L Whitmore, JH Mack
University of Massachusetts Lowell, 2020
2020
Eric Sacia
A Bell, JH Mack, T Kessler, G Gunbas
En aquests moments el sistema no pot dur a terme l'operació. Torneu-ho a provar més tard.
Articles 1–16