Segueix
Tianxiang Zhao
Tianxiang Zhao
Correu electrònic verificat a psu.edu - Pàgina d'inici
Títol
Citada per
Citada per
Any
Graphsmote: Imbalanced node classification on graphs with graph neural networks
T Zhao, X Zhang, S Wang
Proceedings of the 14th ACM international conference on web search and data …, 2021
3892021
A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability
E Dai, T Zhao, H Zhu, J Xu, Z Guo, H Liu, J Tang, S Wang
Machine Intelligence Research 21 (6), 1011-1061, 2024
1652024
Times series forecasting for urban building energy consumption based on graph convolutional network
Y Hu, X Cheng, S Wang, J Chen, T Zhao, E Dai
Applied Energy 307, 118231, 2022
852022
Towards fair classifiers without sensitive attributes: Exploring biases in related features
T Zhao, E Dai, K Shu, S Wang
Proceedings of the Fifteenth ACM International Conference on Web Search and …, 2022
712022
Explanation guided contrastive learning for sequential recommendation
L Wang, EP Lim, Z Liu, T Zhao
Proceedings of the 31st ACM International Conference on Information …, 2022
422022
Exploring edge disentanglement for node classification
T Zhao, X Zhang, S Wang
Proceedings of the ACM Web Conference 2022, 1028-1036, 2022
372022
Semi-supervised graph-to-graph translation
T Zhao, X Tang, X Zhang, S Wang
Proceedings of the 29th ACM International Conference on Information …, 2020
302020
You can still achieve fairness without sensitive attributes: Exploring biases in non-sensitive features
T Zhao, E Dai, K Shu, S Wang
arXiv preprint arXiv:2104.14537, 2021
252021
Analyzing and Reducing Catastrophic Forgetting in Parameter Efficient Tuning
W Ren, X Li, L Wang, T Zhao, W Qin
arXiv preprint arXiv:2402.18865, 2024
232024
Balancing quality and human involvement: An effective approach to interactive neural machine translation
T Zhao, L Liu, G Huang, H Li, Y Liu, L GuiQuan, S Shi
Proceedings of the AAAI conference on artificial intelligence 34 (05), 9660-9667, 2020
232020
Towards faithful and consistent explanations for graph neural networks
T Zhao, D Luo, X Zhang, S Wang
Proceedings of the Sixteenth ACM International Conference on Web Search and …, 2023
202023
Tracking and forecasting dynamics in crowdfunding: A basis-synthesis approach
X Ren, L Xu, T Zhao, C Zhu, J Guo, E Chen
2018 IEEE International Conference on Data Mining (ICDM), 1212-1217, 2018
152018
Topoimb: Toward topology-level imbalance in learning from graphs
T Zhao, D Luo, X Zhang, S Wang
Learning on Graphs Conference, 37: 1-37: 18, 2022
122022
Skill disentanglement for imitation learning from suboptimal demonstrations
T Zhao, W Yu, S Wang, L Wang, X Zhang, Y Chen, Y Liu, W Cheng, ...
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023
112023
Distribution Consistency based Self-Training for Graph Neural Networks with Sparse Labels
F Wang, T Zhao, S Wang
Proceedings of the 17th ACM International Conference on Web Search and Data …, 2024
102024
Towards inductive and efficient explanations for graph neural networks
D Luo, T Zhao, W Cheng, D Xu, F Han, W Yu, X Liu, H Chen, X Zhang
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024
102024
On consistency in graph neural network interpretation
T Zhao, D Luo, X Zhang, S Wang
arXiv preprint arXiv:2205.13733 9, 2022
92022
Faithful and consistent graph neural network explanations with rationale alignment
T Zhao, D Luo, X Zhang, S Wang
ACM Transactions on Intelligent Systems and Technology 14 (5), 1-23, 2023
82023
Synthetic over-sampling for imbalanced node classification with graph neural networks
T Zhao, X Zhang, S Wang
arXiv preprint arXiv:2206.05335, 2022
72022
A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability. arXiv e-prints
E Dai, T Zhao, H Zhu, J Xu, Z Guo, H Liu, J Tang, S Wang
72022
En aquests moments el sistema no pot dur a terme l'operació. Torneu-ho a provar més tard.
Articles 1–20