Compute trends across three eras of machine learning J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos 2022 International Joint Conference on Neural Networks (IJCNN), 1-8, 2022 | 377 | 2022 |
Will we run out of data? an analysis of the limits of scaling datasets in machine learning P Villalobos, J Sevilla, L Heim, T Besiroglu, M Hobbhahn, A Ho arXiv preprint arXiv:2211.04325 1, 2022 | 170 | 2022 |
Machine learning model sizes and the parameter gap P Villalobos, J Sevilla, T Besiroglu, L Heim, A Ho, M Hobbhahn arXiv preprint arXiv:2207.02852, 2022 | 76 | 2022 |
Will we run out of data? Limits of LLM scaling based on human-generated data P Villalobos, A Ho, J Sevilla, T Besiroglu, L Heim, M Hobbhahn arXiv preprint arXiv:2211.04325 3, 2024 | 50 | 2024 |
Forecasting timelines of quantum computing J Sevilla, CJ Riedel arXiv preprint arXiv:2009.05045, 2020 | 42 | 2020 |
Algorithmic progress in language models A Ho, T Besiroglu, E Erdil, D Owen, R Rahman, ZC Guo, D Atkinson, ... arXiv preprint arXiv:2403.05812, 2024 | 26 | 2024 |
Position: Will we run out of data? Limits of LLM scaling based on human-generated data P Villalobos, A Ho, J Sevilla, T Besiroglu, L Heim, M Hobbhahn Forty-first International Conference on Machine Learning, 0 | 23 | |
Ctlearn: Deep learning for gamma-ray astronomy D Nieto, A Brill, Q Feng, TB Humensky, B Kim, T Miener, R Mukherjee, ... arXiv preprint arXiv:1912.09877, 2019 | 21 | 2019 |
Estimating training compute of Deep Learning models J Sevilla, L Heim, M Hobbhahn, T Besiroglu, A Ho, P Villalobos Epoch, January 20, 2022 | 19 | 2022 |
Parameter, compute and data trends in machine learning J Sevilla, P Villalobos, JF Cerón, M Burtell, L Heim, AB Nanjajjar, A Ho, ... 2022-05-30]. https://docs. google. com/spreadsheets/d/1AAIebj …, 2021 | 16 | 2021 |
Parameter counts in machine learning J Sevilla, P Villalobos, J Cerón AI Alignment Forum, 2021 | 15 | 2021 |
Frontiermath: A benchmark for evaluating advanced mathematical reasoning in ai E Glazer, E Erdil, T Besiroglu, D Chicharro, E Chen, A Gunning, ... arXiv preprint arXiv:2411.04872, 2024 | 14 | 2024 |
Compute trends across three eras of machine learning. arXiv J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos arXiv preprint arXiv:2202.05924, 2022 | 11 | 2022 |
Key trends and figures in Machine Learning Epoch https://epochai.org/trends, 2023 | 10 | 2023 |
What’s the backward-forward flop ratio for neural networks? M Hobbhahn, J Sevilla | 10 | 2021 |
Can AI Scaling Continue Through 2030? J Sevilla, T Besiroglu, B Cottier, J You, E Roldán, P Villalobos, E Erdil Epoch AI. August, 2024 | 9 | 2024 |
Compute Trends Across Three Eras of Machine Learning.(2022) J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos URL: https://arxiv. org/abs/2202.05924. doi 10, 2022 | 7 | 2022 |
Explaining data using causal Bayesian Networks J Sevilla 2nd Workshop on Interactive Natural Language Technology for Explainable …, 2020 | 7 | 2020 |
Please Report Your Compute J Sevilla, A Ho, T Besiroglu Communications of the ACM 66 (5), 30-32, 2023 | 6 | 2023 |
Finding, scoring and explaining arguments in Bayesian networks J Sevilla arXiv preprint arXiv:2112.00799, 2021 | 6 | 2021 |