Circuit‐theory applications to connectivity science and conservation BG Dickson, CM Albano, R Anantharaman, P Beier, J Fargione, ... Conservation biology 33 (2), 239-249, 2019 | 353 | 2019 |
Circuitscape in Julia: High performance connectivity modelling to support conservation decisions R Anantharaman, K Hall, V Shah, A Edelman arXiv preprint arXiv:1906.03542, 2019 | 130 | 2019 |
Modelingtoolkit: A composable graph transformation system for equation-based modeling Y Ma, S Gowda, R Anantharaman, C Laughman, V Shah, C Rackauckas arXiv preprint arXiv:2103.05244, 2021 | 114 | 2021 |
Circuitscape in Julia: empowering dynamic approaches to connectivity assessment KR Hall, R Anantharaman, VA Landau, M Clark, BG Dickson, A Jones, ... Land 10 (3), 301, 2021 | 81 | 2021 |
Omniscape. jl: Software to compute omnidirectional landscape connectivity VA Landau, VB Shah, R Anantharaman, KR Hall Journal of Open Source Software 6 (57), 2829, 2021 | 71 | 2021 |
Accelerating simulation of stiff nonlinear systems using continuous-time echo state networks R Anantharaman, Y Ma, S Gowda, C Laughman, V Shah, A Edelman, ... arXiv preprint arXiv:2010.04004, 2020 | 37 | 2020 |
Composing modeling and simulation with machine learning in Julia C Rackauckas, M Gwozdz, A Jain, Y Ma, F Martinuzzi, U Rajput, E Saba, ... 2022 Annual Modeling and Simulation Conference (ANNSIM), 1-17, 2022 | 26 | 2022 |
Continuous-time echo state networks for predicting power system dynamics C Roberts, JD Lara, R Henriquez-Auba, M Bossart, R Anantharaman, ... Electric Power Systems Research 212, 108562, 2022 | 17 | 2022 |
ModelingToolkit: A composable graph transformation system for equation-based modeling (2021) Y Ma, S Gowda, R Anantharaman, C Laughman, V Shah, C Rackauckas arXiv preprint arXiv:2103.05244, 0 | 11 | |
Stably accelerating stiff quantitative systems pharmacology models: Continuous-time echo state networks as implicit machine learning R Anantharaman, A Abdelrehim, A Jain, A Pal, D Sharp, A Edelman, ... IFAC-PapersOnLine 55 (23), 1-6, 2022 | 8 | 2022 |
Circuitscape in Julia: empowering dynamic approaches to connectivity assessment. Land 10: 301 KR Hall, R Anantharaman, VA Landau, M Clark, BG Dickson, A Jones, ... | 7 | 2021 |
Composable and reusable neural surrogates to predict system response of causal model components R Anantharaman, A Abdelrehim, F Martinuzzi, S Yalburgi, E Saba, ... AAAI 2022 Workshop on AI for Design and Manufacturing (ADAM), 2021 | 7 | 2021 |
Circuitscape in Julia: High performance connectivity modelling to support conservation decisions. arXiv 2019 R Anantharaman, K Hall, V Shah, A Edelman arXiv preprint arXiv:1906.03542, 0 | 7 | |
Automated surrogate training performance by incorporating simulator information C Rackauckas, A Abdelrehim, R Anantharaman US Patent App. 18/424,281, 2024 | 1 | 2024 |
Approximation of Large Stiff Acausal Models R Anantharaman Massachusetts Institute of Technology, 2023 | 1 | 2023 |
Active Learning Enhanced Surrogate Modeling of Jet Engines in JuliaSim A Abdelrehim, D Gandhi, S Yalburgi, A Bharambe, R Anantharaman, ... AIAA SCITECH 2025 Forum, 2323, 2025 | | 2025 |