Sledovat
Otmar Scherzer
Otmar Scherzer
E-mailová adresa ověřena na: univie.ac.at - Domovská stránka
Název
Citace
Citace
Rok
Iterative regularization methods for nonlinear ill-posed problems
B Kaltenbacher, A Neubauer, O Scherzer
Walter de Gruyter, 2008
10672008
Variational methods in imaging
O Scherzer, M Grasmair, H Grossauer, M Haltmeier, F Lenzen
Springer Science+ Business Media LLC, 2009
9452009
A convergence analysis of the Landweber iteration for nonlinear ill-posed problems
M Hanke, A Neubauer, O Scherzer
Numerische Mathematik 72 (1), 21-37, 1995
7791995
Handbook of mathematical methods in imaging
O Scherzer
Springer Science & Business Media, 2010
4992010
A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators
B Hofmann, B Kaltenbacher, C Poeschl, O Scherzer
Inverse Problems 23 (3), 987, 2007
4522007
On convergence rates for the iteratively regularized Gauss-Newton method
B Blaschke, A Neubauer, O Scherzer
IMA Journal of Numerical Analysis 17 (3), 421-436, 1997
3221997
Inverse problems light: numerical differentiation
M Hanke, O Scherzer
The American Mathematical Monthly 108 (6), 512-521, 2001
2952001
Sparse regularization with lq penalty term
M Grasmair, M Haltmeier, O Scherzer
Inverse Problems 24 (5), 055020, 2008
2432008
Relations between regularization and diffusion filtering
O Scherzer, J Weickert
Journal of Mathematical Imaging and Vision 12, 43-63, 2000
2222000
Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems
O Scherzer, HW Engl, K Kunisch
SIAM journal on numerical analysis 30 (6), 1796-1838, 1993
2091993
The use of Morozov's discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems
O Scherzer
Computing 51 (1), 45-60, 1993
1971993
Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems
O Scherzer
Journal of Mathematical Analysis and Applications 194 (3), 911-933, 1995
1871995
Thermoacoustic tomography with integrating area and line detectors
P Burgholzer, C Hofer, G Paltauf, M Haltmeier, O Scherzer
IEEE transactions on ultrasonics, ferroelectrics, and frequency control 52 …, 2005
1862005
Necessary and sufficient conditions for linear convergence of ℓ1‐regularization
M Grasmair, O Scherzer, M Haltmeier
Communications on Pure and Applied Mathematics 64 (2), 161-182, 2011
1802011
Thermoacoustic computed tomography with large planar receivers
M Haltmeier, O Scherzer, P Burgholzer, G Paltauf
Inverse problems 20 (5), 1663, 2004
1772004
A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions
P Deuflhard, HW Engl, O Scherzer
Inverse problems 14 (5), 1081, 1998
1731998
Filtered backprojection for thermoacoustic computed tomography in spherical geometry
M Haltmeier, T Schuster, O Scherzer
Mathematical methods in the applied sciences 28 (16), 1919-1937, 2005
1612005
Error estimates for non-quadratic regularization and the relation to enhancement
E Resmerita, O Scherzer
Inverse Problems 22 (3), 801, 2006
1372006
Factors influencing the ill-posedness of nonlinear problems
B Hofmann, O Scherzer
Inverse Problems 10 (6), 1277, 1994
1321994
Impedance-acoustic tomography
B Gebauer, O Scherzer
SIAM Journal on Applied Mathematics 69 (2), 565-576, 2008
1272008
Systém momentálně nemůže danou operaci provést. Zkuste to znovu později.
Články 1–20