Sledovat
Zhao Yaomin
Název
Citace
Citace
Rok
RANS turbulence model development using CFD-driven machine learning
Y Zhao, HD Akolekar, J Weatheritt, V Michelassi, RD Sandberg
Journal of Computational Physics 411, 109413, 2020
2632020
Large-eddy simulation and RANS analysis of the end-wall flow in a linear low-pressure turbine cascade, Part I: flow and secondary vorticity fields under varying inlet condition
R Pichler, Y Zhao, R Sandberg, V Michelassi, R Pacciani, M Marconcini, ...
Journal of turbomachinery 141 (12), 121005, 2019
67*2019
Large eddy simulation and RANS analysis of the end-wall flow in a linear low-pressure-turbine cascade—Part II: Loss generation
M Marconcini, R Pacciani, A Arnone, V Michelassi, R Pichler, Y Zhao, ...
Journal of Turbomachinery 141 (5), 051004, 2019
57*2019
Data-driven scalar-flux model development with application to jet in cross flow
J Weatheritt, Y Zhao, RD Sandberg, S Mizukami, K Tanimoto
International Journal of Heat and Mass Transfer 147, 118931, 2020
512020
Multi-objective CFD-driven development of coupled turbulence closure models
F Waschkowski, Y Zhao, R Sandberg, J Klewicki
Journal of Computational Physics 452, 110922, 2022
502022
Bypass transition in boundary layers subject to strong pressure gradient and curvature effects
Y Zhao, RD Sandberg
Journal of Fluid Mechanics 888, A4, 2020
472020
Vortex reconnection in the late transition in channel flow
Y Zhao, Y Yang, S Chen
Journal of Fluid Mechanics 802, R4, 2016
442016
Using a new entropy loss analysis to assess the accuracy of RANS predictions of an high-pressure turbine vane
Y Zhao, RD Sandberg
Journal of Turbomachinery 142 (8), 081008, 2020
42*2020
Evolution of material surfaces in the temporal transition in channel flow
Y Zhao, Y Yang, S Chen
Journal of Fluid Mechanics 793, 840-876, 2016
422016
Transition modeling for low pressure turbines using computational fluid dynamics driven machine learning
HD Akolekar, F Waschkowski, Y Zhao, R Pacciani, RD Sandberg
Energies 14 (15), 4680, 2021
382021
Machine-learning for turbulence and heat-flux model development: A review of challenges associated with distinct physical phenomena and progress to date
RD Sandberg, Y Zhao
International Journal of Heat and Fluid Flow 95, 108983, 2022
372022
Data-driven model development for large-eddy simulation of turbulence using gene-expression programing
H Li, Y Zhao, J Wang, RD Sandberg
Physics of Fluids 33 (12), 2021
352021
Integration of machine learning and computational fluid dynamics to develop turbulence models for improved low-pressure turbine wake mixing prediction
HD Akolekar, Y Zhao, RD Sandberg, R Pacciani
Journal of Turbomachinery 143 (12), 121001, 2021
32*2021
Constrained large-eddy simulation of laminar-turbulent transition in channel flow
Y Zhao, Z Xia, Y Shi, Z Xiao, S Chen
Physics of Fluids 26 (9), 2014
322014
Toward more general turbulence models via multicase computational-fluid-dynamics-driven training
Y Fang, Y Zhao, F Waschkowski, ASH Ooi, RD Sandberg
AIAA Journal 61 (5), 2100-2115, 2023
292023
Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots
Y Zhao, S Xiong, Y Yang, S Chen
Physical Review Fluids 3 (7), 074701, 2018
272018
Data-driven nonlinear K-L turbulent mixing model via gene expression programming method
H Xie, Y Zhao, Y Zhang
Acta Mechanica Sinica 39 (2), 322315, 2023
202023
Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model
Q Wu, Y Zhao, Y Shi, S Chen
Physics of Fluids 34 (6), 2022
182022
High-fidelity simulations of a high-pressure turbine vane subject to large disturbances: effect of exit Mach number on losses
Y Zhao, RD Sandberg
Journal of Turbomachinery 143 (9), 091002, 2021
182021
Assessment of machine-learned turbulence models trained for improved wake-mixing in low-pressure turbine flows
R Pacciani, M Marconcini, F Bertini, S Rosa Taddei, E Spano, Y Zhao, ...
Energies 14 (24), 8327, 2021
152021
Systém momentálně nemůže danou operaci provést. Zkuste to znovu později.
Články 1–20