On quasilinear elliptic problems without the Ambrosetti–Rabinowitz condition MLM Carvalho, JVA Goncalves, ED Da Silva Journal of Mathematical Analysis and Applications 426 (1), 466-483, 2015 | 55 | 2015 |
Quasilinear elliptic problems with concave–convex nonlinearities MLM Carvalho, ED da Silva, C Goulart Communications in Contemporary Mathematics 19 (06), 1650050, 2017 | 24 | 2017 |
Critical quasilinear elliptic problems using concave–convex nonlinearities ED da Silva, MLM Carvalho, JV Gonçalves, C Goulart Annali di Matematica Pura ed Applicata (1923-) 198 (3), 693-726, 2019 | 22 | 2019 |
Compact embedding theorems and a Lions' type Lemma for fractional Orlicz–Sobolev spaces ED Silva, ML Carvalho, JC de Albuquerque, S Bahrouni Journal of Differential Equations 300, 487-512, 2021 | 19 | 2021 |
Choquard equations via nonlinear Rayleigh quotient for concave-convex nonlinearities MLM Carvalho, ED Silva, C Goulart arXiv preprint arXiv:2102.11335, 2021 | 18 | 2021 |
Quasilinear elliptic systems convex-concave singular terms and -Laplacian operator ML Carvalho, CA Santos, JV Gonçalves | 17 | 2018 |
Positive solutions of strongly nonlinear elliptic problems FJSA Corrêa, ML Carvalho, JVA Goncalves, KO Silva Asymptotic Analysis 93 (1-2), 1-20, 2015 | 17 | 2015 |
Sign changing solutions for quasilinear superlinear elliptic problems F Corrêa, MLM Carvalho, JVA Goncalves, ED Silva Quarterly Journal of Mathematics 68 (2), 391-420, 2017 | 16 | 2017 |
On fractional Musielak–Sobolev spaces and applications to nonlocal problems JC de Albuquerque, LRS de Assis, MLM Carvalho, A Salort The Journal of Geometric Analysis 33 (4), 130, 2023 | 14 | 2023 |
About positive -solutions to quasilinear elliptic problems with singular semilinear term CA Santos, JV Gonçalves, ML Carvalho | 14* | 2019 |
A type of Brézis–Oswald problem to -Laplacian operator with strongly-singular and gradient terms ML Carvalho, JV Goncalves, ED Silva, CAP Santos Calculus of Variations and Partial Differential Equations 60 (5), 195, 2021 | 12 | 2021 |
Quasilinear elliptic problems on non-reflexive Orlicz-Sobolev spaces ED Silva, MLM Carvalho, K Silva, JV Gonçalves | 12 | 2019 |
Separating solutions of nonlinear problems using nonlinear generalized Rayleigh quotients ML Carvalho, Y Il'yasov, CA Santos | 10 | 2021 |
On existence of solution of variational multivalued elliptic equations with critical growth via the Ekeland principle CO Alves, MLM Carvalho, JVA Gonçalves Communications in Contemporary Mathematics 17 (06), 1450038, 2015 | 10 | 2015 |
Existence of S-shaped type bifurcation curve with dual cusp catastrophe via variational methods ML Carvalho, Y Il'yasov, CA Santos Journal of Differential Equations 334, 256-279, 2022 | 9 | 2022 |
Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces ML Carvalho, JV Goncalves Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev …, 2014 | 9 | 2014 |
Fractional double phase Robin problem involving variable order-exponents without Ambrosetti–Rabinowitz condition R Biswas, S Bahrouni, ML Carvalho Zeitschrift für angewandte Mathematik und Physik 73 (3), 99, 2022 | 8 | 2022 |
Discontinuous perturbations of nonhomogeneous strongly-singular Kirchhoff problems VD Rădulescu, CA Santos, L Santos, MLM Carvalho Nonlinear Differential Equations and Applications NoDEA 28, 1-28, 2021 | 6 | 2021 |
Separating of critical points on the Nehari manifold via the nonlinear generalized Rayleigh quotients MLM Carvalho, YS Il'yasov, CA Santos arXiv preprint arXiv:1906.07759, 2019 | 6 | 2019 |
Superlinear fractional elliptic problems via the nonlinear Rayleigh quotient with two parameters ED Silva, MLM Carvalho, C Goulart, ML Silva Mathematische Nachrichten 297 (3), 1062-1091, 2024 | 5 | 2024 |