Convergence analysis of a two-point gradient method for nonlinear ill-posed problems S Hubmer, R Ramlau Inverse Problems 33 (9), 095004, 2017 | 60 | 2017 |
Phase-contrast THz-CT for non-destructive testing P Fosodeder, S Hubmer, A Ploier, R Ramlau, S van Frank, C Rankl Optics Express 29 (10), 15711-15723, 2021 | 36 | 2021 |
Lamé parameter estimation from static displacement field measurements in the framework of nonlinear inverse problems S Hubmer, E Sherina, A Neubauer, O Scherzer SIAM Journal on Imaging Sciences 11 (2), 1268-1293, 2018 | 34 | 2018 |
Nesterov’s accelerated gradient method for nonlinear ill-posed problems with a locally convex residual functional S Hubmer, R Ramlau Inverse Problems 34 (9), 095003, 2018 | 32 | 2018 |
Limited-angle acousto-electrical tomography S Hubmer, K Knudsen, C Li, E Sherina Inverse problems in science and engineering 27 (9), 1298-1317, 2019 | 18 | 2019 |
On regularization via frame decompositions with applications in tomography S Hubmer, R Ramlau, L Weissinger Inverse Problems 38 (5), 055003, 2022 | 13 | 2022 |
Frame decompositions of bounded linear operators in Hilbert spaces with applications in tomography S Hubmer, R Ramlau Inverse Problems 37 (5), 055001, 2021 | 10 | 2021 |
A frame decomposition of the atmospheric tomography operator S Hubmer, R Ramlau Inverse Problems 36 (9), 094001, 2020 | 10 | 2020 |
A mathematical approach towards THz tomography for non-destructive imaging S Hubmer, A Ploier, R Ramlau, P Fosodeder, S van Frank arXiv preprint arXiv:2010.14938, 2020 | 9 | 2020 |
Displacement field estimation from OCT images utilizing speckle information with applications in quantitative elastography E Sherina, L Krainz, S Hubmer, W Drexler, O Scherzer Inverse Problems 36 (12), 124003, 2020 | 8 | 2020 |
ON THE PARAMETER ESTIMATION PROBLEM OF MAGNETIC RESONANCE ADVECTION IMAGING. S Hubmer, A Neubauer, R Ramlau, HU Voss Inverse Problems & Imaging 18 (1), 2018 | 8 | 2018 |
Robust and bias-free localization of individual fixed dipole emitters achieving the Cramér Rao bound for applications in cryo-single molecule localization microscopy F Hinterer, MC Schneider, S Hubmer, M López-Martinez, P Zelger, ... PloS one 17 (2), e0263500, 2022 | 7 | 2022 |
Direction dependent point spread function reconstruction for multi-conjugate adaptive optics on giant segmented mirror telescopes R Wagner, D Saxenhuber, R Ramlau, S Hubmer Astronomy and Computing 40, 100590, 2022 | 6 | 2022 |
Challenges for optical flow estimates in elastography E Sherina, L Krainz, S Hubmer, W Drexler, O Scherzer International Conference on Scale Space and Variational Methods in Computer …, 2021 | 6 | 2021 |
A conjugate-gradient approach to the parameter estimation problem of magnetic resonance advection imaging S Hubmer, A Neubauer, R Ramlau, HU Voss Inverse Problems in Science and Engineering 28 (8), 1154-1165, 2020 | 5 | 2020 |
On stopping rules for Landweber iteration for the solution of ill-posed problems S Hubmer Master’s thesis, Johannes Kepler University Linz, 2015 | 5 | 2015 |
A frame decomposition of the Funk-Radon transform M Quellmalz, L Weissinger, S Hubmer, PD Erchinger International Conference on Scale Space and Variational Methods in Computer …, 2023 | 4 | 2023 |
Quantitative optical coherence elastography: A novel intensity-based inversion method versus strain-based reconstructions L Krainz, E Sherina, S Hubmer, M Liu, W Drexler, O Scherzer IEEE Journal of Selected Topics in Quantum Electronics 29 (4: Biophotonics …, 2022 | 4 | 2022 |
A numerical comparison of some heuristic stopping rules for nonlinear Landweber iteration S Hubmer, E Sherina, S Kindermann, K Raik arXiv preprint arXiv:2205.09831, 2022 | 4 | 2022 |
Characterizations of adjoint Sobolev embedding operators with applications in inverse problems S Hubmer, E Sherina, R Ramlau arXiv preprint arXiv:2202.05101, 2022 | 4 | 2022 |