Convolutional Neural Networks for Large-Scale Remote Sensing Image Classification E Maggiori, Y Tarabalka, G Charpiat, P Alliez IEEE Transactions on Geoscience and Remote Sensing, 2016 | 1241 | 2016 |
Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark E Maggiori, Y Tarabalka, G Charpiat, P Alliez 2017 IEEE International geoscience and remote sensing symposium (IGARSS …, 2017 | 923 | 2017 |
MR-based PET attenuation correction: method and validation M Hofmann, F Steinke, V Scheel, G Charpiat, M Brady, B Schölkopf, ... Proceedings of the 2007 IEEE Nuclear Science Symposium and Medical Imaging …, 2007 | 631* | 2007 |
MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration M Hofmann, F Steinke, V Scheel, G Charpiat, J Farquhar, P Aschoff, ... Journal of Nuclear Medicine 49 (11), 1875-1883, 2008 | 630 | 2008 |
Automatic image colorization via multimodal predictions G Charpiat, M Hofmann, B Schölkopf European conference on computer vision, 126-139, 2008 | 306 | 2008 |
High-Resolution Aerial Image Labeling With Convolutional Neural Networks E Maggiori, Y Tarabalka, G Charpiat, P Alliez IEEE Transactions on Geoscience and Remote Sensing, 2017 | 275 | 2017 |
Approximations of shape metrics and application to shape warping and empirical shape statistics G Charpiat, O Faugeras, R Keriven Foundations of Computational Mathematics 5 (1), 1-58, 2005 | 229 | 2005 |
Fully Convolutional Neural Networks For Remote Sensing Image Classification E Maggiori, Y Tarabalka, G Charpiat, P Alliez IEEE International Geoscience and Remote Sensing Symposium, 2016 | 214 | 2016 |
Generalized gradients: Priors on minimization flows G Charpiat, P Maurel, JP Pons, R Keriven, O Faugeras International Journal of Computer Vision 73 (3), 325-344, 2007 | 129 | 2007 |
Learning to Match Appearances by Correlations in a Covariance Metric Space S Bąk, G Charpiat, E Corvée, F Brémond, M Thonnat Computer Vision–ECCV 2012, 806-820, 2012 | 117 | 2012 |
Tropical cyclone track forecasting using fused deep learning from aligned reanalysis data S Giffard-Roisin, M Yang, G Charpiat, C Kumler Bonfanti, B Kégl, ... Frontiers in Big Data 3, 1, 2020 | 114 | 2020 |
Recurrent Neural Networks to Correct Satellite Image Classification Maps E Maggiori, G Charpiat, Y Tarabalka, P Alliez IEEE Transactions on Geoscience and Remote Sensing, 2017 | 102 | 2017 |
Designing spatially coherent minimizing flows for variational problems based on active contours G Charpiat, R Keriven, JP Pons, O Faugeras Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1 2 …, 2005 | 89 | 2005 |
Input Similarity from the Neural Network Perspective G Charpiat, N Girard, L Felardos, Y Tarabalka Advances in Neural Information Processing Systems, 5343-5352, 2019 | 88 | 2019 |
Deep learning for population size history inference: Design, comparison and combination with approximate Bayesian computation T Sanchez, J Cury, G Charpiat, F Jay Molecular Ecology Resources 21 (8), 2645-2660, 2021 | 78 | 2021 |
Multimodal image alignment through a multiscale chain of neural networks with application to remote sensing A Zampieri, G Charpiat, N Girard, Y Tarabalka European Conference on Computer Vision (ECCV), 2018 | 61* | 2018 |
Training recurrent networks online without backtracking Y Ollivier, G Charpiat arXiv preprint arXiv:1507.07680, 2015 | 56 | 2015 |
Multiple Object Tracking by Efficient Graph Partitioning R Kumar, G Charpiat, M Thonnat Asian Conference on Computer Vision, 445-460, 2014 | 50 | 2014 |
Variational, geometric, and statistical methods for modeling brain anatomy and function O Faugeras, G Adde, G Charpiat, C Chefd'Hotel, M Clerc, T Deneux, ... NeuroImage 23, S46-S55, 2004 | 48 | 2004 |
Shape statistics for image segmentation with prior G Charpiat, O Faugeras, R Keriven 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1-6, 2007 | 45 | 2007 |