Følg
Dario Piga
Dario Piga
Senior Researcher at IDSIA - Dalle Molle Institute for ArtificiaI Intelligence, SUPSI-USI, Lugano
Verificeret mail på supsi.ch - Startside
Titel
Citeret af
Citeret af
År
Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review
A Cominola, M Giuliani, D Piga, A Castelletti, AE Rizzoli
Environmental Modelling & Software 72, 198-214, 2015
3712015
Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets
F D'Ascenzo, O De Filippo, G Gallone, G Mittone, MA Deriu, ...
The Lancet 397 (10270), 199-207, 2021
2722021
A hybrid signature-based iterative disaggregation algorithm for non-intrusive load monitoring
A Cominola, M Giuliani, D Piga, A Castelletti, AE Rizzoli
Applied energy 185, 331-344, 2017
1732017
Performance-oriented model learning for data-driven MPC design
D Piga, M Forgione, S Formentin, A Bemporad
IEEE control systems letters 3 (3), 577-582, 2019
1552019
High-altitude wind power generation
L Fagiano, M Milanese, D Piga
IEEE Transactions on Energy Conversion 25 (1), 168-180, 2009
1482009
Optimization of airborne wind energy generators
L Fagiano, M Milanese, D Piga
International Journal of robust and nonlinear control 22 (18), 2055-2083, 2012
1292012
Direct data-driven control of constrained systems
D Piga, S Formentin, A Bemporad
IEEE Transactions on Control Systems Technology 26 (4), 1422-1429, 2017
1242017
Sparse optimization for automated energy end use disaggregation
D Piga, A Cominola, M Giuliani, A Castelletti, AE Rizzoli
IEEE Transactions on Control Systems Technology 24 (3), 1044-1051, 2015
1072015
Piecewise affine regression via recursive multiple least squares and multicategory discrimination
V Breschi, D Piga, A Bemporad
Automatica 73, 155-162, 2016
992016
Set-membership error-in-variables identification through convex relaxation techniques
V Cerone, D Piga, D Regruto
IEEE Transactions on Automatic Control 57 (2), 517-522, 2011
912011
Direct learning of LPV controllers from data
S Formentin, D Piga, R Tóth, SM Savaresi
Automatica 65, 98-110, 2016
852016
Continuous-time system identification with neural networks: Model structures and fitting criteria
M Forgione, D Piga
European Journal of Control 59, 69-81, 2021
842021
Fitting jump models
A Bemporad, V Breschi, D Piga, SP Boyd
Automatica 96, 11-21, 2018
712018
Human–robot collaboration in sensorless assembly task learning enhanced by uncertainties adaptation via Bayesian Optimization
L Roveda, M Magni, M Cantoni, D Piga, G Bucca
Robotics and Autonomous Systems 136, 103711, 2021
652021
LPV system identification under noise corrupted scheduling and output signal observations
D Piga, P Cox, R Toth, V Laurain
Automatica 53, 329-338, 2015
602015
Robot control parameters auto-tuning in trajectory tracking applications
L Roveda, M Forgione, D Piga
Control Engineering Practice 101, 104488, 2020
562020
Continuous control actions learning and adaptation for robotic manipulation through reinforcement learning
AA Shahid, D Piga, F Braghin, L Roveda
Autonomous Robots 46 (3), 483-498, 2022
552022
dynoNet: A neural network architecture for learning dynamical systems
M Forgione, D Piga
International Journal of Adaptive Control and Signal Processing 35 (4), 612-626, 2021
542021
Torque vectoring for high-performance electric vehicles: An efficient MPC calibration
A Lucchini, S Formentin, M Corno, D Piga, SM Savaresi
IEEE Control Systems Letters 4 (3), 725-730, 2020
532020
An instrumental least squares support vector machine for nonlinear system identification
V Laurain, R Tóth, D Piga, WX Zheng
Automatica 54, 340-347, 2015
522015
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–20