Følg
Jonathan  Schmidt
Jonathan Schmidt
Masters Student in Machine Learning, University of Tübingen
Verificeret mail på uni-tuebingen.de - Startside
Titel
Citeret af
Citeret af
År
A probabilistic state space model for joint inference from differential equations and data
J Schmidt, N Krämer, P Hennig
Advances in Neural Information Processing Systems 34, 12374-12385, 2021
262021
Probabilistic ODE solutions in millions of dimensions
N Krämer, N Bosch, J Schmidt, P Hennig
International Conference on Machine Learning, 11634-11649, 2022
182022
Probabilistic numerical method of lines for time-dependent partial differential equations
N Krämer, J Schmidt, P Hennig
International Conference on Artificial Intelligence and Statistics, 625-639, 2022
162022
ProbNum: Probabilistic Numerics in Python
J Wenger, N Krämer, M Pförtner, J Schmidt, N Bosch, N Effenberger, ...
arXiv preprint arXiv:2112.02100, 2021
152021
The rank-reduced Kalman filter: Approximate dynamical-low-rank filtering in high dimensions
J Schmidt, P Hennig, J Nick, F Tronarp
Advances in Neural Information Processing Systems 36, 61364-61376, 2023
122023
Executable State Machines Derived from Structured Textual Requirements-Connecting Requirements and Formal System Design.
B Walter, J Martin, J Schmidt, H Dettki, S Rudolph
MODELSWARD, 193-200, 2019
72019
A Generative Framework for Probabilistic, Spatiotemporally Coherent Downscaling of Climate Simulation
J Schmidt, L Schmidt, F Strnad, N Ludwig, P Hennig
arXiv preprint arXiv:2412.15361, 2024
2024
Probabilistic ODE Solvers for Integration Error-Aware Model Predictive Control
A Lahr, F Tronarp, N Bosch, J Schmidt, P Hennig, MN Zeilinger
arXiv preprint arXiv:2401.17731, 2024
2024
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–8