A probabilistic state space model for joint inference from differential equations and data J Schmidt, N Krämer, P Hennig Advances in Neural Information Processing Systems 34, 12374-12385, 2021 | 26 | 2021 |
Probabilistic ODE solutions in millions of dimensions N Krämer, N Bosch, J Schmidt, P Hennig International Conference on Machine Learning, 11634-11649, 2022 | 18 | 2022 |
Probabilistic numerical method of lines for time-dependent partial differential equations N Krämer, J Schmidt, P Hennig International Conference on Artificial Intelligence and Statistics, 625-639, 2022 | 16 | 2022 |
ProbNum: Probabilistic Numerics in Python J Wenger, N Krämer, M Pförtner, J Schmidt, N Bosch, N Effenberger, ... arXiv preprint arXiv:2112.02100, 2021 | 15 | 2021 |
The rank-reduced Kalman filter: Approximate dynamical-low-rank filtering in high dimensions J Schmidt, P Hennig, J Nick, F Tronarp Advances in Neural Information Processing Systems 36, 61364-61376, 2023 | 12 | 2023 |
Executable State Machines Derived from Structured Textual Requirements-Connecting Requirements and Formal System Design. B Walter, J Martin, J Schmidt, H Dettki, S Rudolph MODELSWARD, 193-200, 2019 | 7 | 2019 |
A Generative Framework for Probabilistic, Spatiotemporally Coherent Downscaling of Climate Simulation J Schmidt, L Schmidt, F Strnad, N Ludwig, P Hennig arXiv preprint arXiv:2412.15361, 2024 | | 2024 |
Probabilistic ODE Solvers for Integration Error-Aware Model Predictive Control A Lahr, F Tronarp, N Bosch, J Schmidt, P Hennig, MN Zeilinger arXiv preprint arXiv:2401.17731, 2024 | | 2024 |