Følg
Brian Kroth
Brian Kroth
Verificeret mail på microsoft.com - Startside
Titel
Citeret af
Citeret af
År
From {WiscKey} to bourbon: A learned index for {Log-Structured} merge trees
Y Dai, Y Xu, A Ganesan, R Alagappan, B Kroth, A Arpaci-Dusseau, ...
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI …, 2020
1272020
Data science through the looking glass: Analysis of millions of github notebooks and ml. net pipelines
F Psallidas, Y Zhu, B Karlas, J Henkel, M Interlandi, S Krishnan, B Kroth, ...
ACM SIGMOD Record 51 (2), 30-37, 2022
672022
LlamaTune: sample-efficient DBMS configuration tuning
K Kanellis, C Ding, B Kroth, A Müller, C Curino, S Venkataraman
arXiv preprint arXiv:2203.05128, 2022
512022
Lessons learned from the early performance evaluation of Intel optane DC persistent memory in DBMS
Y Wu, K Park, R Sen, B Kroth, J Do
Proceedings of the 16th International Workshop on Data Management on New …, 2020
452020
Cloudy with high chance of DBMS: A 10-year prediction for Enterprise-Grade ML
A Agrawal, R Chatterjee, C Curino, A Floratou, N Gowdal, M Interlandi, ...
arXiv preprint arXiv:1909.00084, 2019
392019
Optimizing databases by learning hidden parameters of solid state drives
A Kakaraparthy, JM Patel, K Park, BP Kroth
Proceedings of the VLDB Endowment 13 (4), 519-532, 2019
122019
VIP hashing: adapting to skew in popularity of data on the fly
A Kakaraparthy, JM Patel, BP Kroth, K Park
Proceedings of the VLDB Endowment 15 (10), 1978-1990, 2022
82022
MLOS: An infrastructure for automated software performance engineering
C Curino, N Godwal, B Kroth, S Kuryata, G Lapinski, S Liu, S Oks, ...
Proceedings of the Fourth International Workshop on Data Management for End …, 2020
82020
Thayer, et al. 2020. MLOS: An infrastructure for automated software performance engineering
C Curino, N Godwal, B Kroth, S Kuryata, G Lapinski, S Liu, S Oks, ...
Proceedings of the Fourth International Workshop on Data Management for End …, 0
7
Notebook for navigating code using machine learning and flow analysis
BP Kroth, JJ Henkel
US Patent 11,816,456, 2023
62023
Towards building autonomous data services on azure
Y Zhu, Y Tian, J Cahoon, S Krishnan, A Agarwal, R Alotaibi, ...
Companion of the 2023 International Conference on Management of Data, 217-224, 2023
52023
Vertically Autoscaling Monolithic Applications with CaaSPER: Scalable Container-as-a-Service Performance Enhanced Resizing Algorithm for the Cloud
A Pavlenko, J Cahoon, Y Zhu, B Kroth, M Nelson, A Carter, D Liao, ...
Companion of the 2024 International Conference on Management of Data, 241-254, 2024
32024
MLOS in Action: Bridging the Gap Between Experimentation and Auto-Tuning in the Cloud
B Kroth, S Matusevych, R Alotaibi, Y Zhu, A Gruenheid, Y Tian
Proceedings of the VLDB Endowment 17 (12), 4269-4272, 2024
22024
Performance Roulette: How Cloud Weather Affects ML-Based System Optimization
J Freischuetz, K Kanellis, B Kroth, S Venkataraman
ML for Systems Workshop at NeurIPS, 2023
22023
VASIM: Vertical Autoscaling Simulator Toolkit
A Pavlenko, K Saur, Y Zhu, B Kroth, J Cahoon, J Camacho-Rodríguez
2024 IEEE 40th International Conference on Data Engineering (ICDE), 5413-5416, 2024
12024
VIP Hashing--Adapting to Skew in Popularity of Data on the Fly (extended version)
A Kakaraparthy, JM Patel, BP Kroth, K Park
arXiv preprint arXiv:2206.12380, 2022
12022
CS764 Project Report: Adventures in Moodle Performance Analysis
B Kroth
12014
Checksumming RAID
B Kroth, S Yang
unpublished, 2010
12010
VERTICAL SCALING OF COMPUTE CONTAINERS
KJ Saur, JY Cahoon, Y Zhu, A Pavlenko, J Camacho Rodriguez, BP Kroth, ...
US Patent App. 18/472,947, 2024
2024
Towards Query Optimizer as a Service (QOaaS) in a Unified LakeHouse Ecosystem: Can One QO Rule Them All?
R Alotaibi, Y Tian, S Grafberger, J Camacho-Rodríguez, N Bruno, B Kroth, ...
arXiv preprint arXiv:2411.13704, 2024
2024
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–20