Følg
Judith Rousseau
Judith Rousseau
Verificeret mail på stats.ox.ac.uk - Startside
Titel
Citeret af
Citeret af
År
Redefine statistical significance
DJ Benjamin, JO Berger, M Johannesson, BA Nosek, EJ Wagenmakers, ...
Nature human behaviour 2 (1), 6-10, 2018
30452018
Asymptotic behaviour of the posterior distribution in overfitted mixture models
J Rousseau, K Mengersen
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2011
3872011
Optimal sample size for multiple testing: the case of gene expression microarrays
P Müller, G Parmigiani, C Robert, J Rousseau
Journal of the American Statistical Association 99 (468), 990-1001, 2004
3312004
On the impact of the activation function on deep neural networks training
S Hayou, A Doucet, J Rousseau
International conference on machine learning, 2672-2680, 2019
2872019
Harold Jeffreys's theory of probability revisited
CP Robert, N Chopin, J Rousseau
Statistical Science, 141-172, 2009
2262009
Adaptive Bayesian density estimation with location-scale mixtures
W Kruijer, J Rousseau, A Van Der Vaart
1672010
A Bayesian information criterion for singular models
M Drton, M Plummer
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2017
1622017
Relevant statistics for Bayesian model choice
JM Marin, NS Pillai, CP Robert, J Rousseau
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2014
1622014
Combining expert opinions in prior elicitation
I Albert, S Donnet, C Guihenneuc-Jouyaux, S Low-Choy, K Mengersen, ...
1512012
A Bernstein–von Mises theorem for smooth functionals in semiparametric models
I Castillo, J Rousseau
1472015
Asymptotic properties of approximate Bayesian computation
DT Frazier, GM Martin, CP Robert, J Rousseau
Biometrika 105 (3), 593-607, 2018
1392018
Bernstein–von Mises theorem for linear functionals of the density
V Rivoirard, J Rousseau
1282012
Rates of convergence for the posterior distributions of mixtures of betas and adaptive nonparametric estimation of the density
J Rousseau
992010
On the selection of initialization and activation function for deep neural networks
S Hayou, A Doucet, J Rousseau
arXiv preprint arXiv:1805.08266, 2018
962018
On adaptive posterior concentration rates
M Hoffmann, J Rousseau, J Schmidt-Hieber
942015
Testing hypotheses via a mixture estimation model
K Kamary, K Mengersen, CP Robert, J Rousseau
arXiv preprint arXiv:1412.2044, 2014
862014
Model misspecification in approximate Bayesian computation: consequences and diagnostics
DT Frazier, CP Robert, J Rousseau
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2020
822020
Bayes and empirical Bayes: do they merge?
S Petrone, J Rousseau, C Scricciolo
Biometrika 101 (2), 285-302, 2014
792014
Quantitative risk assessment from farm to fork and beyond: A global Bayesian approach concerning food‐borne diseases
I Albert, E Grenier, JB Denis, J Rousseau
Risk Analysis: An International Journal 28 (2), 557-571, 2008
762008
Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal likelihood estimator
J Rousseau, B Szabo
752017
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–20