Følg
Jeremy McGibbon
Jeremy McGibbon
Machine Learning Researcher, Allen Institute for Artificial Intelligence
Verificeret mail på uw.edu
Titel
Citeret af
Citeret af
År
Correcting weather and climate models by machine learning nudged historical simulations
O Watt‐Meyer, ND Brenowitz, SK Clark, B Henn, A Kwa, J McGibbon, ...
Geophysical Research Letters 48 (15), e2021GL092555, 2021
962021
Cloud System Evolution in the Trades (CSET): Following the evolution of boundary layer cloud systems with the NSF–NCAR GV
B Albrecht, V Ghate, J Mohrmann, R Wood, P Zuidema, C Bretherton, ...
Bulletin of the American Meteorological Society 100 (1), 93-121, 2019
782019
Correcting coarse‐grid weather and climate models by machine learning from global storm‐resolving simulations
CS Bretherton, B Henn, A Kwa, ND Brenowitz, O Watt‐Meyer, J McGibbon, ...
Journal of Advances in Modeling Earth Systems 14 (2), e2021MS002794, 2022
722022
ACE: A fast, skillful learned global atmospheric model for climate prediction
O Watt-Meyer, G Dresdner, J McGibbon, SK Clark, B Henn, J Duncan, ...
arXiv preprint arXiv:2310.02074, 2023
382023
Machine learning climate model dynamics: Offline versus online performance
ND Brenowitz, B Henn, J McGibbon, SK Clark, A Kwa, WA Perkins, ...
arXiv preprint arXiv:2011.03081, 2020
372020
Skill of ship‐following large‐eddy simulations in reproducing MAGIC observations across the northeast P acific stratocumulus to cumulus transition region
J McGibbon, CS Bretherton
Journal of Advances in Modeling Earth Systems 9 (2), 810-831, 2017
352017
Correcting a 200 km resolution climate model in multiple climates by machine learning from 25 km resolution simulations
SK Clark, ND Brenowitz, B Henn, A Kwa, J McGibbon, WA Perkins, ...
Journal of Advances in Modeling Earth Systems 14 (9), e2022MS003219, 2022
292022
Lagrangian evolution of the Northeast Pacific marine boundary layer structure and cloud during CSET
J Mohrmann, CS Bretherton, IL McCoy, J McGibbon, R Wood, V Ghate, ...
Monthly Weather Review 147 (12), 4681-4700, 2019
252019
Productive performance engineering for weather and climate modeling with python
T Ben-Nun, L Groner, F Deconinck, T Wicky, E Davis, J Dahm, OD Elbert, ...
SC22: International Conference for High Performance Computing, Networking …, 2022
192022
sympl (v. 0.4. 0) and climt (v. 0.15. 3)–towards a flexible framework for building model hierarchies in Python
JM Monteiro, J McGibbon, R Caballero
Geoscientific Model Development 11 (9), 3781-3794, 2018
182018
Single‐column emulation of reanalysis of the northeast Pacific marine boundary layer
J McGibbon, CS Bretherton
Geophysical Research Letters 46 (16), 10053-10060, 2019
162019
Machine‐learned climate model corrections from a global storm‐resolving model: Performance across the annual cycle
A Kwa, SK Clark, B Henn, ND Brenowitz, J McGibbon, O Watt‐Meyer, ...
Journal of Advances in Modeling Earth Systems 15 (5), e2022MS003400, 2023
142023
fv3gfs-wrapper: a Python wrapper of the FV3GFS atmospheric model
J McGibbon, ND Brenowitz, M Cheeseman, SK Clark, JPS Dahm, ...
Geoscientific Model Development 14 (7), 4401-4409, 2021
142021
Drivers of seasonal variability in marine boundary layer aerosol number concentration investigated using a steady state approach
J Mohrmann, R Wood, J McGibbon, R Eastman, E Luke
Journal of Geophysical Research: Atmospheres 123 (2), 1097-1112, 2018
132018
sympl (v. 0.4. 0) and climt (v. 0.15. 3)–towards a flexible framework for building model hierarchies in Python, Geosci. Model Dev., 11, 3781–3794
JM Monteiro, J McGibbon, R Caballero
122018
Predicting high-resolution air quality using machine learning: Integration of large eddy simulation and urban morphology data
S Wang, J McGibbon, Y Zhang
Environmental Pollution 344, 123371, 2024
112024
Neural network parameterization of subgrid‐scale physics from a realistic geography global storm‐resolving simulation
O Watt‐Meyer, ND Brenowitz, SK Clark, B Henn, A Kwa, J McGibbon, ...
Journal of Advances in Modeling Earth Systems 16 (2), e2023MS003668, 2024
102024
sympl (v. 0.4. 0) and climt (v. 0.15. 3)–towards a flexible framework for building model hierarchies in Python, Geosci. Model Dev., 11, 3781–3794, 10.5194
JM Monteiro, J McGibbon, R Caballero
gmd-11-3781-2018, 2018
92018
Assessment of precipitating marine stratocumulus clouds in the E3SMv1 atmosphere model: A case study from the ARM MAGIC field campaign
X Zheng, SA Klein, VP Ghate, S Santos, J McGibbon, P Caldwell, ...
Monthly Weather Review 148 (8), 3341-3359, 2020
82020
Machine learning climate model dynamics: Offline versus online performance. arXiv
ND Brenowitz, B Henn, J McGibbon, SK Clark, A Kwa, WA Perkins, ...
Atmospheric and Oceanic Physics, 2020
72020
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–20