Følg
Michalis Titsias
Michalis Titsias
DeepMind
Verificeret mail på google.com - Startside
Titel
Citeret af
Citeret af
År
Variational learning of inducing variables in sparse Gaussian processes
M Titsias
Artificial intelligence and statistics, 567-574, 2009
21402009
Bayesian Gaussian process latent variable model
M Titsias, ND Lawrence
Proceedings of the thirteenth international conference on artificial …, 2010
6462010
Doubly stochastic variational Bayes for non-conjugate inference
M Titsias, M Lázaro-Gredilla
International conference on machine learning, 1971-1979, 2014
4602014
Variational Heteroscedastic Gaussian Process Regression.
M Lázaro-Gredilla, MK Titsias
ICML, 841-848, 2011
3462011
SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage
R Clifford, T Louis, P Robbe, S Ackroyd, A Burns, AT Timbs, ...
Blood, The Journal of the American Society of Hematology 123 (7), 1021-1031, 2014
2642014
Spike and slab variational inference for multi-task and multiple kernel learning
M Titsias, M Lázaro-Gredilla
Advances in neural information processing systems 24, 2011
2472011
Bayesian feature and model selection for Gaussian mixture models
C Constantinopoulos, MK Titsias, A Likas
IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (6), 1013-1018, 2006
2362006
The generalized reparameterization gradient
FR Ruiz, TRC AUEB, D Blei
Advances in neural information processing systems 29, 2016
2052016
Functional regularisation for continual learning with gaussian processes
MK Titsias, J Schwarz, AGG Matthews, R Pascanu, YW Teh
arXiv preprint arXiv:1901.11356, 2019
2012019
Variational inference for latent variables and uncertain inputs in Gaussian processes
AC Damianou, MK Titsias, ND Lawrence
The Journal of Machine Learning Research 17 (1), 1425-1486, 2016
2002016
Efficient multioutput Gaussian processes through variational inducing kernels
M Álvarez, D Luengo, M Titsias, ND Lawrence
Proceedings of the Thirteenth International Conference on Artificial …, 2010
1602010
Manifold relevance determination
A Damianou, C Ek, M Titsias, N Lawrence
arXiv preprint arXiv:1206.4610, 2012
1542012
Variational Gaussian process dynamical systems
A Damianou, M Titsias, N Lawrence
Advances in neural information processing systems 24, 2011
1472011
Retrieval of biophysical parameters with heteroscedastic Gaussian processes
M Lázaro-Gredilla, MK Titsias, J Verrelst, G Camps-Valls
IEEE Geoscience and Remote Sensing Letters 11 (4), 838-842, 2013
1362013
The infinite gamma-Poisson feature model
M Titsias
Advances in Neural Information Processing Systems 20, 2007
1162007
Greedy learning of multiple objects in images using robust statistics and factorial learning
CKI Williams, MK Titsias
Neural Computation 16 (5), 1039-1062, 2004
992004
Local expectation gradients for black box variational inference
TRC AUEB, M Lázaro-Gredilla
Advances in neural information processing systems 28, 2015
962015
Shared kernel models for class conditional density estimation
MK Titsias, AC Likas
IEEE Transactions on Neural Networks 12 (5), 987-997, 2001
962001
Variational model selection for sparse Gaussian process regression
MK Titsias
Report, University of Manchester, UK, 2009
912009
A contrastive divergence for combining variational inference and mcmc
F Ruiz, M Titsias
International Conference on Machine Learning, 5537-5545, 2019
892019
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–20