Følg
Chad Babcock
Titel
Citeret af
Citeret af
År
Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar
M Alonzo, DC Morton, BD Cook, HE Andersen, C Babcock, R Pattison
Environmental Research Letters 12 (6), 065004, 2017
682017
Geostatistical estimation of forest biomass in interior Alaska combining Landsat-derived tree cover, sampled airborne lidar and field observations
C Babcock, AO Finley, HE Andersen, R Pattison, BD Cook, DC Morton, ...
Remote Sensing of Environment 212, 212-230, 2018
652018
Spatial factor models for high-dimensional and large spatial data: An application in forest variable mapping
D Taylor-Rodriguez, AO Finley, A Datta, C Babcock, HE Andersen, ...
Statistica Sinica 29, 1155, 2019
582019
Modeling forest biomass and growth: Coupling long-term inventory and LiDAR data
C Babcock, AO Finley, BD Cook, A Weiskittel, CW Woodall
Remote Sensing of Environment 182, 1-12, 2016
562016
LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients
C Babcock, AO Finley, JB Bradford, R Kolka, R Birdsey, MG Ryan
Remote Sensing of Environment 169, 113-127, 2015
562015
Large-area hybrid estimation of aboveground biomass in interior Alaska using airborne laser scanning data
LT Ene, T Gobakken, HE Andersen, E Næsset, BD Cook, DC Morton, ...
Remote Sensing of Environment 204, 741-755, 2018
402018
Harnessing the temporal dimension to improve object-based image analysis classification of wetlands
M Halabisky, C Babcock, LM Moskal
Remote Sensing 10 (9), 1467, 2018
382018
Multivariate spatial regression models for predicting individual tree structure variables using LiDAR data
C Babcock, J Matney, AO Finley, A Weiskittel, BD Cook
IEEE Journal of Selected Topics in Applied Earth Observations and Remote …, 2012
342012
Classifying forest type in the national forest inventory context with airborne hyperspectral and lidar data
C Shoot, HE Andersen, LM Moskal, C Babcock, BD Cook, DC Morton
Remote Sensing 13 (10), 1863, 2021
312021
Late-Pleistocene paleowinds and aeolian sand mobilization in north-central Lower Michigan
AF Arbogast, MD Luehmann, BA Miller, PA Wernette, KM Adams, ...
Aeolian Research 16, 109-116, 2015
262015
Revealing the hidden carbon in forested wetland soils
AJ Stewart, M Halabisky, C Babcock, DE Butman, DV D’Amore, ...
Nature communications 15 (1), 726, 2024
202024
A Bayesian model to estimate land surface phenology parameters with harmonized Landsat 8 and Sentinel-2 images
C Babcock, AO Finley, N Looker
Remote Sensing of Environment 261, 112471, 2021
172021
Using machine learning to improve predictions and provide insight into fluvial sediment transport
JW Lund, JT Groten, DL Karwan, C Babcock
Hydrological Processes 36 (8), e14648, 2022
142022
Dynamic spatial regression models for space‐varying forest stand tables
AO Finley, S Banerjee, AR Weiskittel, C Babcock, BD Cook
Environmetrics 25 (8), 596-609, 2014
142014
An approach to estimating forest biomass while quantifying estimate uncertainty and correcting bias in machine learning maps
E Emick, C Babcock, GW White, AT Hudak, GM Domke, AO Finley
Remote Sensing of Environment 295, 113678, 2023
132023
Joint hierarchical models for sparsely sampled high-dimensional LiDAR and forest variables
AO Finley, S Banerjee, Y Zhou, BD Cook, C Babcock
Remote Sensing of Environment 190, 149-161, 2017
122017
Late-Pleistocene paleowinds and aeolian sand mobilization in north-central Lower Michigan. Aeolian Research 16, 109–116
AF Arbogast, MD Luehmann, BA Miller, PA Wernette, KM Adams, ...
82015
The 2014 Tanana Inventory Pilot: A USFS-NASA Partnership to Leverage Advanced Remote Sensing Technologies for Forest Inventory
HE Andersen, C Babcock, R Pattison, B Cook, D Morton, A Finley
Pushing Boundaries: New Directions in Inventory Techniques & Applications …, 2015
72015
Models to support forest inventory and small area estimation using sparsely sampled LiDAR: A case study involving G-LiHT LiDAR in Tanana, Alaska
AO Finley, HE Andersen, C Babcock, BD Cook, DC Morton, S Banerjee
Journal of Agricultural, Biological and Environmental Statistics 29 (4), 695-722, 2024
62024
Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy data: A Bayesian model approach
ES Shannon, AO Finley, DJ Hayes, SN Noralez, AR Weiskittel, BD Cook, ...
Environmetrics 35 (4), e2840, 2024
62024
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–20