Følg
William Agnew
William Agnew
Verificeret mail på cs.washington.edu - Startside
Titel
Citeret af
Citeret af
År
Documenting large webtext corpora: A case study on the colossal clean crawled corpus
J Dodge, M Sap, A Marasović, W Agnew, G Ilharco, D Groeneveld, ...
arXiv preprint arXiv:2104.08758, 2021
4902021
The values encoded in machine learning research
A Birhane, P Kalluri, D Card, W Agnew, R Dotan, M Bao
2022 ACM Conference on Fairness, Accountability, and Transparency, 173-184, 2022
3522022
Evaluating the Social Impact of Generative AI Systems in Systems and Society
I Solaiman, Z Talat, W Agnew, L Ahmad, D Baker, SL Blodgett, ...
arXiv preprint arXiv:2306.05949, 2023
129*2023
Robots Enact Malignant Stereotypes
A Hundt, W Agnew, V Zeng, S Kacianka, M Gombolay
2022 ACM Conference on Fairness, Accountability, and Transparency, 743-756, 2022
602022
The illusion of artificial inclusion
W Agnew, AS Bergman, J Chien, M Díaz, S El-Sayed, J Pittman, ...
Proceedings of the CHI Conference on Human Factors in Computing Systems, 1-12, 2024
462024
Queer In AI: A Case Study in Community-Led Participatory AI
OO Queerinai, A Ovalle, A Subramonian, A Singh, C Voelcker, ...
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and …, 2023
33*2023
Amodal 3d reconstruction for robotic manipulation via stability and connectivity
W Agnew, C Xie, A Walsman, O Murad, Y Wang, P Domingos, S Srinivasa
Conference on Robot Learning, 1498-1508, 2021
252021
Representation in AI Evaluations
AS Bergman, LA Hendricks, M Rauh, B Wu, W Agnew, M Kunesch, I Duan, ...
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and …, 2023
202023
The Surveillance AI Pipeline
PR Kalluri, W Agnew, M Cheng, K Owens, L Soldaini, A Birhane
arXiv preprint arXiv:2309.15084, 2023
152023
Bound by the Bounty: Collaboratively Shaping Evaluation Processes for Queer AI Harms
N Dennler, A Ovalle, A Singh, L Soldaini, A Subramonian, H Tu, W Agnew, ...
Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 375-386, 2023
112023
Who's in and who's out? A case study of multimodal CLIP-filtering in DataComp
R Hong, W Agnew, T Kohno, J Morgenstern
arXiv preprint arXiv:2405.08209, 2024
72024
Unsupervised Object-Level Deep Reinforcement Learning
W Agnew, P Domingos
NeurIPS Workshop on Deep RL, 2018
42018
An ensemble-based recommendation engine for scientific data transfers
W Agnew, M Fischer, I Foster, K Chard
2016 Seventh International Workshop on Data-Intensive Computing in the …, 2016
32016
Relevance-Guided Modeling of Object Dynamics for Reinforcement Learning
W Agnew, P Domingos
arXiv preprint arXiv:2003.01384, 2020
2*2020
Technologies of Resistance to AI
W Agnew, KR McKee, J Kay
2*
'Simulacrum of Stories': Examining Large Language Models as Qualitative Research Participants
S Kapania, W Agnew, M Eslami, H Heidari, S Fox
arXiv preprint arXiv:2409.19430, 2024
12024
The Cake that is Intelligence and Who Gets to Bake it: An AI Analogy and its Implications for Participation
M Mundt, A Ovalle, F Friedrich, P Agrawal, S Paul, M Brack, K Kersting, ...
arXiv preprint arXiv:2502.03038, 2025
2025
Data Defenses Against Large Language Models
W Agnew, HH Jiang, C Sum, M Sap, S Das
arXiv preprint arXiv:2410.13138, 2024
2024
Sound Check: Auditing Audio Datasets
W Agnew, J Barnett, A Chu, R Hong, M Feffer, R Netzorg, HH Jiang, ...
arXiv preprint arXiv:2410.13114, 2024
2024
What Can AI Ethics Learn from Anarchism?
W Agnew
XRDS: Crossroads, The ACM Magazine for Students 30 (4), 22-25, 2024
2024
Systemet kan ikke foretage handlingen nu. Prøv igen senere.
Artikler 1–20