Spagnn: Spatially-aware graph neural networks for relational behavior forecasting from sensor data S Casas, C Gulino, R Liao, R Urtasun 2020 IEEE International Conference on Robotics and Automation (ICRA), 9491-9497, 2020 | 184 | 2020 |
Implicit latent variable model for scene-consistent motion forecasting S Casas, C Gulino, S Suo, K Luo, R Liao, R Urtasun Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 181 | 2020 |
Waymax: An accelerated, data-driven simulator for large-scale autonomous driving research C Gulino, J Fu, W Luo, G Tucker, E Bronstein, Y Lu, J Harb, X Pan, ... Advances in Neural Information Processing Systems 36, 2024 | 85 | 2024 |
Spatially-aware graph neural networks for relational behavior forecasting from sensor data S Casas, C Gulino, R Liao, R Urtasun arXiv preprint arXiv:1910.08233, 2019 | 56 | 2019 |
The importance of prior knowledge in precise multimodal prediction S Casas, C Gulino, S Suo, R Urtasun 2020 IEEE/RSJ international conference on intelligent robots and systems …, 2020 | 50 | 2020 |
The waymo open sim agents challenge N Montali, J Lambert, P Mougin, A Kuefler, N Rhinehart, M Li, C Gulino, ... Advances in Neural Information Processing Systems 36, 2024 | 43 | 2024 |
Generalizing informed sampling for asymptotically-optimal sampling-based kinodynamic planning via markov chain monte carlo D Yi, R Thakker, C Gulino, O Salzman, S Srinivasa 2018 IEEE International Conference on Robotics and Automation (ICRA), 7063-7070, 2018 | 26 | 2018 |
Systems and methods for generating motion forecast data for actors with respect to an autonomous vehicle and training a machine learned model for the same R Urtasun, R Liao, S Casas, CC Gulino US Patent 11,636,307, 2023 | 18 | 2023 |
Imitative planning using conditional normalizing flow S Agarwal, H Sikchi, C Gulino, E Wilkinson, S Gautam arXiv preprint arXiv:2007.16162, 2020 | 13 | 2020 |
Improving Agent Behaviors with RL Fine-Tuning for Autonomous Driving Z Peng, W Luo, Y Lu, T Shen, C Gulino, A Seff, J Fu European Conference on Computer Vision, 165-181, 2024 | 2 | 2024 |
Systems and methods for generating motion forecast data for actors with respect to an autonomous vehicle and training a machine learned model for the same R Urtasun, R Liao, S Casas, CC Gulino US Patent 12,008,454, 2024 | 1 | 2024 |
Systems and methods for latent distribution modeling for scene-consistent motion forecasting S Casas, CC Gulino, S Da Suo, KZ Luo, R Liao, R Urtasun US Patent 11,842,530, 2023 | 1 | 2023 |
Systems and methods for training probabilistic object motion prediction models using non-differentiable prior knowledge S Casas, CC Gulino, S Da Suo, R Urtasun US Patent 11,836,585, 2023 | 1 | 2023 |
Association and tracking for autonomous devices S Gautam, BC Becker, C Vallespi-Gonzalez, CC Gulino US Patent 11,348,339, 2022 | 1 | 2022 |
Association and tracking for autonomous devices S Gautam, BC Becker, C Vallespi-Gonzalez, CC Gulino US Patent 12,131,487, 2024 | | 2024 |
Systems and Methods for Generating Motion Forecast Data for Actors with Respect to an Autonomous Vehicle and Training a Machine Learned Model for the Same R Urtasun, R Liao, S Casas, CC Gulino US Patent App. 18/656,150, 2024 | | 2024 |
Systems and Methods for Latent Distribution Modeling for Scene-Consistent Motion Forecasting S Casas, CC Gulino, S Da Suo, KZ Luo, R Liao, R Urtasun US Patent App. 18/519,976, 2024 | | 2024 |
Systems and Methods for Training Probabilistic Object Motion Prediction Models Using Non-Differentiable Prior Knowledge S Casas, CC Gulino, S Da Suo, R Urtasun US Patent App. 18/495,434, 2024 | | 2024 |
Providing actionable uncertainties in autonomous vehicles CC Gulino, AR Ansari US Patent 11,860,636, 2024 | | 2024 |
Providing actionable uncertainties in autonomous vehicles CC Gulino, AR Ansari US Patent 11,454,975, 2022 | | 2022 |