Folgen
Marvin Carl May
Marvin Carl May
PostDoc/Chief Engineer, Karlsruhe Institute of Technology
Bestätigte E-Mail-Adresse bei alumni.kit.edu
Titel
Zitiert von
Zitiert von
Jahr
Explainable reinforcement learning in production control of job shop manufacturing system
A Kuhnle, MC May, L Schäfer, G Lanza
International Journal of Production Research 60 (19), 5812-5834, 2022
552022
Machine learning in manufacturing towards industry 4.0: From ‘for now’to ‘four-know’
T Chen, V Sampath, MC May, S Shan, OJ Jorg, JJ Aguilar Martín, ...
Applied Sciences 13 (3), 1903, 2023
532023
Opportunistic maintenance scheduling with deep reinforcement learning
A Valet, T Altenmüller, B Waschneck, MC May, A Kuhnle, G Lanza
Journal of Manufacturing Systems 64, 518-534, 2022
502022
Decentralized multi-agent production control through economic model bidding for matrix production systems
MC May, L Kiefer, A Kuhnle, N Stricker, G Lanza
Procedia Cirp 96, 3-8, 2021
422021
Foresighted digital twin for situational agent selection in production control
MC May, L Overbeck, M Wurster, A Kuhnle, G Lanza
Procedia CIRP 99, 27-32, 2021
422021
Modelling and condition-based control of a flexible and hybrid disassembly system with manual and autonomous workstations using reinforcement learning
M Wurster, M Michel, MC May, A Kuhnle, N Stricker, G Lanza
Journal of intelligent manufacturing 33 (2), 575-591, 2022
412022
Product generation module: automated production planning for optimized workload and increased efficiency in matrix production systems
MC May, S Schmidt, A Kuhnle, N Stricker, G Lanza
Procedia CIRP 96, 45-50, 2021
362021
Pattern recognition in multivariate time series: Towards an automated event detection method for smart manufacturing systems
V Kapp, MC May, G Lanza, T Wuest
Journal of Manufacturing and Materials Processing 4 (3), 88, 2020
362020
Ontology-based production simulation with ontologysim
MC May, L Kiefer, A Kuhnle, G Lanza
Applied Sciences 12 (3), 1608, 2022
292022
Reinforcement learning based production control of semi-automated manufacturing systems
L Overbeck, A Hugues, MC May, A Kuhnle, G Lanza
Procedia CIRP 103, 170-175, 2021
232021
Applying natural language processing in manufacturing
MC May, J Neidhöfer, T Körner, L Schäfer, G Lanza
Procedia CIRP 115, 184-189, 2022
222022
Development of a human-centered implementation strategy for industry 4.0 exemplified by digital shopfloor management
M Kandler, MC May, J Kurtz, A Kuhnle, G Lanza
Towards Sustainable Customization: Bridging Smart Products and Manufacturing …, 2022
182022
IIoT System Canvas—From architecture patterns towards an IIoT development framework
MC May, D Glatter, D Arnold, D Pfeffer, G Lanza
Journal of Manufacturing Systems 72, 437-459, 2024
152024
Queue length forecasting in complex manufacturing job shops
MC May, A Albers, MD Fischer, F Mayerhofer, L Schäfer, G Lanza
Forecasting 3 (2), 322-338, 2021
132021
AI based geometric similarity search supporting component reuse in engineering design
C Krahe, M Marinov, T Schmutz, Y Hermann, M Bonny, M May, G Lanza
Procedia CIRP 109, 275-280, 2022
122022
Data analytics for time constraint adherence prediction in a semiconductor manufacturing use-case
MC May, S Maucher, A Holzer, A Kuhnle, G Lanza
Procedia CIRP 100, 49-54, 2021
122021
Reinforcement learning for sustainability enhancement of production lines
A Loffredo, MC May, A Matta, G Lanza
Journal of Intelligent Manufacturing 35 (8), 3775-3791, 2024
102024
Multi-variate time-series for time constraint adherence prediction in complex job shops
MC May, L Behnen, A Holzer, A Kuhnle, G Lanza
Procedia CIRP 103, 55-60, 2021
102021
Hybrid Monte Carlo tree search based multi-objective scheduling
C Hofmann, X Liu, M May, G Lanza
Production Engineering 17 (1), 133-144, 2023
92023
Improving production system flexibility and changeability through software-defined manufacturing
S Behrendt, M Ungen, J Fisel, KC Hung, MC May, U Leberle, G Lanza
Congress of the German Academic Association for Production Technology, 705-716, 2022
92022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20