Folgen
Mohamed Mehana
Mohamed Mehana
Bestätigte E-Mail-Adresse bei lanl.gov
Titel
Zitiert von
Zitiert von
Jahr
Shale characteristics impact on Nuclear Magnetic Resonance (NMR) fluid typing methods and correlations
M Mehana, I El-monier
Petroleum 2 (2), 138-147, 2016
1052016
Capacity assessment and cost analysis of geologic storage of hydrogen: A case study in Intermountain-West Region USA
F Chen, Z Ma, H Nasrabadi, B Chen, MZS Mehana, J Van Wijk
International Journal of Hydrogen Energy 48 (24), 9008-9022, 2023
772023
Proppant placement in complex fracture geometries: A computational fluid dynamics study
Y Gong, M Mehana, I El-Monier, H Viswanathan
Journal of Natural Gas Science and Engineering 79, 103295, 2020
612020
Coalbed methane characterization and modeling: review and outlook
T Mohamed, M Mehana
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 47 …, 2020
53*2020
Impact of salinity and mineralogy on slick water spontaneous imbibition and formation strength in shale
M Mehana, M Al Salman, M Fahes
Energy & fuels 32 (5), 5725-5735, 2018
532018
The impact of asphaltene deposition on fluid flow in sandstone
M Mehana, J Abraham, M Fahes
Journal of Petroleum Science and Engineering 174, 676-681, 2019
472019
Reduced methane recovery at high pressure due to methane trapping in shale nanopores
CW Neil, M Mehana, RP Hjelm, ME Hawley, EB Watkins, Y Mao, ...
Communications Earth & Environment 1 (1), 49, 2020
462020
Machine-learning predictions of the shale wells’ performance
M Mehana, E Guiltinan, V Vesselinov, R Middleton, JD Hyman, Q Kang, ...
Journal of Natural Gas Science and Engineering 88, 103819, 2021
442021
Modeling nanoconfinement effects using active learning
JE Santos, M Mehana, H Wu, M Prodanovic, Q Kang, N Lubbers, ...
The Journal of Physical Chemistry C 124 (40), 22200-22211, 2020
442020
A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media
K Wang, Y Chen, M Mehana, N Lubbers, KC Bennett, Q Kang, ...
Journal of Computational Physics 443, 110526, 2021
412021
Modeling and scale-bridging using machine learning: Nanoconfinement effects in porous media
N Lubbers, A Agarwal, Y Chen, S Son, M Mehana, Q Kang, S Karra, ...
Scientific reports 10 (1), 13312, 2020
342020
Asphaltene aggregation in oil and gas mixtures: Insights from molecular simulation
M Mehana, M Fahes, L Huang
Energy & Fuels 33 (6), 4721-4730, 2019
342019
Investigation of double layer expansion in low-salinity waterflooding: molecular simulation study
M Mehana, MM Fahes
SPE Western Regional Meeting, D051S013R009, 2018
312018
Efficient prediction of hydrogen storage performance in depleted gas reservoirs using machine learning
S Mao, B Chen, M Malki, F Chen, M Morales, Z Ma, M Mehana
Applied Energy 361, 122914, 2024
282024
Role of large-scale underground hydrogen storage and its pathways to achieve net-zero in China
Y Chen, X Jin, L Zeng, Z Zhong, M Mehana, W Xiao, W Pu, ...
Journal of Energy Storage 72, 108448, 2023
272023
A critical review of physics-informed machine learning applications in subsurface energy systems
A Latrach, ML Malki, M Morales, M Mehana, M Rabiei
Geoenergy Science and Engineering, 212938, 2024
262024
Molecular simulation of hydrogen-shale gas system phase behavior under multiscale conditions: a molecular-level analysis of hydrogen storage in shale gas reservoirs
F Chen, M Mehana, H Nasrabadi
Energy & Fuels 37 (3), 2449-2456, 2023
242023
Molecular modeling of subsurface phenomena related to petroleum engineering
M Mehana, Q Kang, H Nasrabadi, H Viswanathan
Energy & Fuels 35 (4), 2851-2869, 2021
232021
Molecular simulation of double layer expansion mechanism during low-salinity waterflooding
M Mehana, M Fahes, Q Kang, H Viswanathan
Journal of Molecular Liquids 318, 114079, 2020
232020
The density of oil/gas mixtures: insights from molecular simulations
M Mehana, M Fahes, L Huang
SPE Journal 23 (05), 1798-1808, 2018
232018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20