Folgen
Yao Qin
Yao Qin
UCSB & Google DeepMind
Bestätigte E-Mail-Adresse bei ucsb.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
A Dual-Stage Attention-based Recurrent Neural Network for Time Series Prediction
Y Qin, D Song, H Chen, W Cheng, G Jiang, G Cottrell
International Joint Conference on Artificial Intelligence (IJCAI), 2017
16552017
Saliency Detection via Cellular Automata
Y Qin, H Lu, Y Xu, H Wang
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 110-119, 2015
6512015
Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition
Y Qin, N Carlini, G Cottrell, I Goodfellow, C Raffel
International Conference on Machine Learning (ICML), 5231-5240, 2019
5102019
Autofocus Layer for Semantic Segmentation
Y Qin, K Kamnitsas, S Ancha, J Nanavati, G Cottrell, A Criminisi, A Nori
Medical Image Computing and Computer Assisted Intervention (MICCAI), 603-611, 2018
1412018
A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models
J Gu, Z Han, S Chen, A Beirami, B He, G Zhang, R Liao, Y Qin, V Tresp, ...
arXiv preprint arXiv:2307.12980, 2023
1392023
Detecting and Diagnosing Adversarial Images with Class-conditional Capsule Reconstructions
Y Qin, N Frosst, S Sabour, C Raffel, G Cottrell, G Hinton
International Conference on Learning Representations (ICLR), 2020
1012020
CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation
T Wang, X Wang, Y Qin, B Packer, K Li, J Chen, A Beutel, E Chi
EMNLP, 2020
972020
Hierarchical Cellular Automata for Visual Saliency
Y Qin, M Feng, H Lu, GW Cottrell
International Journal of Computer Vision 126, 751-770, 2018
722018
Are Vision Transformers Robust to Patch Perturbations?
J Gu, V Tresp, Y Qin
European Conference on Computer Vision (ECCV), 404-421, 2022
712022
Understanding and Improving Robustness of Vision Transformers through Patch-based Negative Augmentation
Y Qin, C Zhang, T Chen, B Lakshminarayanan, A Beutel, X Wang
Advances in Neural Information Processing Systems 35, 16276-16289, 2022
502022
Improving Calibration through the Relationship with Adversarial Robustness
Y Qin, X Wang, A Beutel, E Chi
Advances in Neural Information Processing Systems 34, 14358-14369, 2021
282021
Training deep Boltzmann networks with sparse Ising machines
S Niazi, S Chowdhury, NA Aadit, M Mohseni, Y Qin, KY Camsari
Nature Electronics, 1-10, 2024
252024
Deflecting Adversarial Attacks
Y Qin, N Frosst, C Raffel, G Cottrell, G Hinton
arXiv preprint arXiv:2002.07405, 2020
232020
Improving uncertainty estimates through the relationship with adversarial robustness
Y Qin, X Wang, A Beutel, EH Chi
arXiv preprint arXiv:2006.16375, 2020
122020
Effective Robustness against Natural Distribution Shifts for Models with Different Training Data
Z Shi, N Carlini, A Balashankar, L Schmidt, CJ Hsieh, A Beutel, Y Qin
Advances in Neural Information Processing Systems, 2023
102023
Evaluation Methodology for Attacks against Confidence Thresholding Models
I Goodfellow, Y Qin, D Berthelot
82018
Fast Decision Boundary based Out-of-Distribution Detector
L Liu, Y Qin
International Conference on Machine Learning (ICML), 2024
62024
Towards Robust Prompts on Vision-Language Models
J Gu, A Beirami, X Wang, A Beutel, P Torr, Y Qin
arXiv preprint arXiv:2304.08479, 2023
62023
What are effective labels for augmented data? improving calibration and robustness with autolabel
Y Qin, X Wang, B Lakshminarayanan, EH Chi, A Beutel
2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), 365-376, 2023
62023
Initialization Matters for Adversarial Transfer Learning
A Hua, J Gu, Z Xue, N Carlini, E Wong, Y Qin
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024
52024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20