Folgen
Jianhua Zhong
Titel
Zitiert von
Zitiert von
Jahr
Real-time fault diagnosis for gas turbine generator systems using extreme learning machine
PK Wong, Z Yang, CM Vong, J Zhong
Neurocomputing 128, 249-257, 2014
1812014
Sparse Bayesian extreme learning committee machine for engine simultaneous fault diagnosis
PK Wong, J Zhong, Z Yang, CM Vong
Neurocomputing 174, 331-343, 2016
972016
Fault diagnosis of rotating machinery based on multiple probabilistic classifiers
JH Zhong, PK Wong, ZX Yang
Mechanical Systems and Signal Processing 108, 99-114, 2018
952018
Representational learning for fault diagnosis of wind turbine equipment: A multi-layered extreme learning machines approach
ZX Yang, XB Wang, JH Zhong
Energies 9 (6), 379, 2016
952016
Machine condition monitoring and fault diagnosis based on support vector machine
J Zhong, Z Yang, SF Wong
2010 IEEE International Conference on Industrial Engineering and Engineering …, 2010
552010
Design and testing of a nonlinear model predictive controller for ride height control of automotive semi-active air suspension systems
X Ma, PK Wong, J Zhao, JH Zhong, H Ying, X Xu
IEEE Access 6, 63777-63793, 2018
542018
A hybrid EEMD-based SampEn and SVD for acoustic signal processing and fault diagnosis
ZX Yang, JH Zhong
Entropy 18 (4), 112, 2016
522016
Multi-fault rapid diagnosis for wind turbine gearbox using sparse Bayesian extreme learning machine
JH Zhong, J Zhang, J Liang, H Wang
IEEE Access 7, 773-781, 2018
402018
Simultaneous-fault diagnosis of gearboxes using probabilistic committee machine
JH Zhong, PK Wong, ZX Yang
Sensors 16 (2), 185, 2016
362016
Gearbox fault diagnosis based on artificial neural network and genetic algorithms
Z Yang, WI Hoi, J Zhong
Proceedings 2011 International Conference on System Science and Engineering …, 2011
342011
A novel multi-segment feature fusion based fault classification approach for rotating machinery
J Liang, Y Zhang, JH Zhong, H Yang
Mechanical Systems and Signal Processing 122, 19-41, 2019
312019
Detection for incipient damages of wind turbine rolling bearing based on VMD-AMCKD method
J Zhang, J Zhang, M Zhong, J Zhong, J Zheng, L Yao
IEEE Access 7, 67944-67959, 2019
302019
Simultaneous‐Fault Diagnosis of Gas Turbine Generator Systems Using a Pairwise‐Coupled Probabilistic Classifier
Z Yang, PK Wong, CM Vong, J Zhong, JJY Liang
Mathematical problems in engineering 2013 (1), 827128, 2013
242013
Correlated EEMD and effective feature extraction for both periodic and irregular faults diagnosis in rotating machinery
J Liang, JH Zhong, ZX Yang
Energies 10 (10), 1652, 2017
152017
A new framework for intelligent simultaneous-fault diagnosis of rotating machinery using pairwise-coupled sparse Bayesian extreme learning committee machine
PK Wong, JH Zhong, ZX Yang, CM Vong
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of …, 2017
142017
An effective fault feature extraction method for gas turbine generator system diagnosis
JH Zhong, JJY Liang, ZX Yang, PK Wong, XB Wang
Shock and Vibration 2016 (1), 9359426, 2016
142016
Research on fault diagnosis method of planetary gearbox based on dynamic simulation and deep transfer learning
MM Song, ZC Xiong, JH Zhong, SG Xiao, YH Tang
Scientific Reports 12 (1), 17023, 2022
82022
Machine learning method with compensation distance technique for gear fault detection
Z Yang, J Zhong, SF Wong
2011 9th World Congress on Intelligent Control and Automation, 632-637, 2011
72011
Fault diagnosis of rolling bearings under variable conditions based on unsupervised domain adaptation method
J Zhong, C Lin, Y Gao, J Zhong, S Zhong
Mechanical Systems and Signal Processing 215, 111430, 2024
62024
Remaining Useful Life Prediction of Rolling Bearings Based on ECA-CAE and Autoformer
J Zhong, H Li, Y Chen, C Huang, S Zhong, H Geng
Biomimetics 9 (1), 40, 2024
52024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20