Folgen
Beatriz Moya
Beatriz Moya
Associate Professor, ENSAM Paris
Bestätigte E-Mail-Adresse bei ensam.eu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Digital twins that learn and correct themselves
B Moya, A Badías, I Alfaro, F Chinesta, E Cueto
International Journal for Numerical Methods in Engineering 123 (13), 3034-3044, 2022
652022
Learning slosh dynamics by means of data
B Moya, D González, I Alfaro, F Chinesta, E Cueto
Computational Mechanics 64, 511-523, 2019
562019
A graph convolutional autoencoder approach to model order reduction for parametrized PDEs
F Pichi, B Moya, JS Hesthaven
Journal of Computational Physics 501, 112762, 2024
522024
Physically sound, self-learning digital twins for sloshing fluids
B Moya, I Alfaro, D Gonzalez, F Chinesta, E Cueto
PLoS One 15 (6), e0234569, 2020
382020
Physics perception in sloshing scenes with guaranteed thermodynamic consistency
B Moya, A Badias, D Gonzalez, F Chinesta, E Cueto
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (2), 2136-2150, 2022
192022
A thermodynamics-informed active learning approach to perception and reasoning about fluids
B Moya, A Badías, D González, F Chinesta, E Cueto
Computational Mechanics 72 (3), 577-591, 2023
132023
Learning physics from data: a thermodynamic interpretation
F Chinesta, E Cueto, M Grmela, B Moya, M Pavelka, M Šípka
Workshop on Joint Structures and Common Foundations of Statistical Physics …, 2020
112020
Computational Sensing, Understanding, and Reasoning: An Artificial Intelligence Approach to Physics-Informed World Modeling
B Moya, A Badías, D González, F Chinesta, E Cueto
Archives of Computational Methods in Engineering 31 (4), 1897-1914, 2024
52024
Physics-informed reinforcement learning for perception and reasoning about fluids
B Moya, A Badias, D Gonzalez, F Chinesta, E Cueto
arXiv e-prints, arXiv: 2203.05775, 2022
42022
Harnessing Hybrid Digital Twinning for Decision-Support in Smart Infrastructures
H Liang, B Moya, E Seah, ANK Weng, D Baillargeat, J Joerin, X Zhang, ...
Engineering Archive, 2024
12024
Thermodynamics-informed super-resolution of scarce temporal dynamics data
C Bermejo-Barbanoj, B Moya, A Badías, F Chinesta, E Cueto
arXiv preprint arXiv:2402.17506, 2024
12024
Teoría de estructuras para arquitectos
E Cueto, D González, B Moya
Prensas de la Universidad de Zaragoza, 2023
12023
Resilience-based post disaster recovery optimization for infrastructure system via Deep Reinforcement Learning
H Liang, B Moya, F Chinesta, E Chatzi
arXiv preprint arXiv:2410.18577, 2024
2024
Uso de la Estática Gráfica Computacional en el aprendizaje del diseño estructural
B Moya, D González, I Alfaro, EC Prendes
Conference proceedings CINEVIDU 2024: 8th International Virtual Conference …, 2024
2024
Superresolución con redes neuronales informadas por la termodinámica en problemas fluidodinámicos
CB Barbanoj, B Moya, A Badías, F Chinesta, E Cueto
Jornada de Jóvenes Investigadores del I3A 11, 2023
2023
Thermodynamics of the machine learning of physical phenomena
B Moya, D González, F Chinesta, EC Prendes
Congress on Numerical Methods in Engineering CMN 2022 (2022. Las Palmas de …, 2022
2022
Reinforcement learning for physically sound fluid dynamics correction
B Moya, A Badias, D González, F Chinesta, E Cueto
Congress on Numerical Methods in Engineering CMN 2022 (2022. Las Palmas de …, 2022
2022
Data Learning of Fluid Dynamics for Physically Informed Digital Twins
B Moya, I Alfaro, D González, F Chinesta, E Cueto
Jornada de Jóvenes Investigadores del I3A 8, 2020
2020
Physics informed Generative Adversarial Networks for interactive structural shell design
B Moya, F Chinesta, E Cueto
Deep learning of fluid dynamics from free surface data for full state reconstruction and correction
B Moya, A Badıas, Q Hernández, D González, I Alfaro, F Chinesta, ...
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20