Layer‐by‐layer assembly of cross‐functional semi‐transparent MXene‐carbon nanotubes composite films for next‐generation electromagnetic interference shielding GM Weng, J Li, M Alhabeb, C Karpovich, H Wang, J Lipton, K Maleski, ... Advanced Functional Materials 28 (44), 1803360, 2018 | 527 | 2018 |
A Promising Carbon/g‐C3N4 Composite Negative Electrode for a Long‐Life Sodium‐Ion Battery GM Weng, Y Xie, H Wang, C Karpovich, J Lipton, J Zhu, J Kong, ... Angewandte Chemie 131 (39), 13865-13871, 2019 | 113 | 2019 |
Strongly coupled phenazine–porphyrin dyads: Light-harvesting molecular assemblies with broad absorption coverage SH Lee, AJ Matula, G Hu, JL Troiano, CJ Karpovich, RH Crabtree, ... ACS applied materials & interfaces 11 (8), 8000-8008, 2019 | 43 | 2019 |
A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery system GM Weng, J Kong, H Wang, C Karpovich, J Lipton, F Antonio, ZS Fishman, ... Energy Storage Materials 24, 557-564, 2020 | 41 | 2020 |
Underwater organic solar cells via selective removal of electron acceptors near the top electrode J Kong, D Nordlund, JS Jin, SY Kim, SM Jin, D Huang, Y Zheng, ... ACS Energy Letters 4 (5), 1034-1041, 2019 | 32 | 2019 |
Perovskite solar cells with enhanced fill factors using polymer-capped solvent annealing J Kong, H Wang, JA Rohr, ZS Fishman, Y Zhou, M Li, M Cotlet, G Kim, ... ACS Applied Energy Materials 3 (8), 7231-7238, 2020 | 26 | 2020 |
Interpretable machine learning enabled inorganic reaction classification and synthesis condition prediction C Karpovich, E Pan, Z Jensen, E Olivetti Chemistry of Materials 35 (3), 1062-1079, 2023 | 22 | 2023 |
Deep reinforcement learning for inverse inorganic materials design E Pan, C Karpovich, E Olivetti arXiv preprint arXiv:2210.11931, 2022 | 13 | 2022 |
Inorganic synthesis reaction condition prediction with generative machine learning C Karpovich, Z Jensen, V Venugopal, E Olivetti arXiv preprint arXiv:2112.09612, 2021 | 9 | 2021 |
Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivity B Pattengale, J Neu, A Tada, G Hu, CJ Karpovich, GW Brudvig Polyhedron 203, 115182, 2021 | 7 | 2021 |
Machine-Learning Based Selection and Synthesis of Candidate Metal-Insulator Transition Metal Oxides AB Georgescu, P Ren, C Karpovich, E Olivetti, JM Rondinelli arXiv preprint arXiv:2404.08653, 2024 | 2 | 2024 |
Emerging microelectronic materials by design: Navigating combinatorial design space with scarce and dispersed data H Zhang, AB Georgescu, S Yerramilli, C Karpovich, DW Apley, EA Olivetti, ... arXiv preprint arXiv:2412.17283, 2024 | | 2024 |
Deep reinforcement learning for inverse inorganic materials design C Karpovich, E Pan, EA Olivetti npj Computational Materials 10 (1), 287, 2024 | | 2024 |
Machine Learning Enabled Inorganic Synthesis Planning and Materials Design C Karpovich Massachusetts Institute of Technology, 2023 | | 2023 |
Layer-By-Layer Assembly of Cross-Functional Semi-Transparent Mxene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding CJ Karpovich, GM Weng, J Li, M Alhabeb, H Wang, J Lipton, K Maleski, ... 2018 AIChE Annual Meeting, 2018 | | 2018 |