Folgen
Nihang Fu
Nihang Fu
Bestätigte E-Mail-Adresse bei email.sc.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Scalable deeper graph neural networks for high-performance materials property prediction
SS Omee, SY Louis, N Fu, L Wei, S Dey, R Dong, Q Li, J Hu
Patterns 3 (5), 2022
852022
Simultaneously-collected multimodal lying pose dataset: Enabling in-bed human pose monitoring
S Liu, X Huang, N Fu, C Li, Z Su, S Ostadabbas
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (1), 1106-1118, 2022
66*2022
Physics guided deep learning for generative design of crystal materials with symmetry constraints
Y Zhao, EMD Siriwardane, Z Wu, N Fu, M Al-Fahdi, M Hu, J Hu
npj Computational Materials 9 (1), 38, 2023
492023
Invariant representation learning for infant pose estimation with small data
X Huang, N Fu, S Liu, S Ostadabbas
2021 16th IEEE International Conference on Automatic Face and Gesture …, 2021
462021
Material transformers: deep learning language models for generative materials design
N Fu, L Wei, Y Song, Q Li, R Xin, SS Omee, R Dong, EMD Siriwardane, ...
Machine Learning: Science and Technology 4 (1), 015001, 2023
382023
TCSP: a template-based crystal structure prediction algorithm for materials discovery
L Wei, N Fu, EMD Siriwardane, W Yang, SS Omee, R Dong, R Xin, J Hu
Inorganic Chemistry 61 (22), 8431-8439, 2022
342022
Crystal Composition Transformer: Self‐Learning Neural Language Model for Generative and Tinkering Design of Materials
L Wei, Q Li, Y Song, S Stefanov, R Dong, N Fu, EMD Siriwardane, F Chen, ...
Advanced Science 11 (36), 2304305, 2024
202024
DeepXRD, a deep learning model for predicting XRD spectrum from material composition
R Dong, Y Zhao, Y Song, N Fu, SS Omee, S Dey, Q Li, L Wei, J Hu
ACS Applied Materials & Interfaces 14 (35), 40102-40115, 2022
172022
Structure-based out-of-distribution (OOD) materials property prediction: a benchmark study
SS Omee, N Fu, R Dong, M Hu, J Hu
npj Computational Materials 10 (1), 144, 2024
132024
Probabilistic generative transformer language models for generative design of molecules
L Wei, N Fu, Y Song, Q Wang, J Hu
Journal of Cheminformatics 15 (1), 88, 2023
132023
Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models
N Fu, J Hu, Y Feng, G Morrison, HC Loye, J Hu
Advanced Science 10 (28), 2301011, 2023
11*2023
Realistic material property prediction using domain adaptation based machine learning
J Hu, D Liu, N Fu, R Dong
Digital Discovery 3 (2), 300-312, 2024
102024
Global mapping of structures and properties of crystal materials
Q Li, R Dong, N Fu, SS Omee, L Wei, J Hu
Journal of Chemical Information and Modeling 63 (12), 3814-3826, 2023
62023
Appearance-independent pose-based posture classification in infants
X Huang, S Liu, M Wan, N Fu, DL Pino, B Modayur, S Ostadabbas
International Conference on Pattern Recognition, 21-36, 2022
62022
Physics-Guided Dual Self-Supervised Learning for Structure-Based Material Property Prediction
N Fu, L Wei, J Hu
The Journal of Physical Chemistry Letters 15 (10), 2841-2850, 2024
42024
Materials synthesizability and stability prediction using a semi-supervised teacher-student dual neural network
D Gleaves, N Fu, EMD Siriwardane, Y Zhao, J Hu
Digital Discovery 2 (2), 377-391, 2023
42023
Infant 2D Pose Estimation and Posture Detection System
S Ostadabbas, X Huang, N FU, S Liu
US Patent App. 18/287,518, 2024
22024
MD-HIT: Machine learning for material property prediction with dataset redundancy control
Q Li, N Fu, SS Omee, J Hu
npj Computational Materials 10 (1), 245, 2024
12024
Generative AI for Materials Discovery: Design Without Understanding
J Hu, Q Li, N Fu
Engineering 39, 13-17, 2024
12024
Physical encoding improves OOD performance in deep learning materials property prediction
N Fu, SS Omee, J Hu
Computational Materials Science 248, 113603, 2025
2025
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20