Folgen
Christian Leibig
Christian Leibig
AI/ML science & engineering
Bestätigte E-Mail-Adresse bei minimal-entropy.com
Titel
Zitiert von
Zitiert von
Jahr
Leveraging uncertainty information from deep neural networks for disease detection
C Leibig, V Allken, MS Ayhan, P Berens, S Wahl
Scientific reports 7 (1), 1-14, 2017
5752017
Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis
C Leibig, M Brehmer, S Bunk, D Byng, K Pinker, L Umutlu
The Lancet Digital Health 4 (7), e507-e519, 2022
1432022
Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis
C Leibig, T Wachtler, G Zeck
Journal of neuroscience methods 271, 1-13, 2016
472016
Inflammatory stimulation preserves physiological properties of retinal ganglion cells after optic nerve injury
H Stutzki, C Leibig, A Andreadaki, D Fischer, G Zeck
Frontiers in cellular neuroscience 8, 38, 2014
402014
AI-based prevention of interval cancers in a national mammography screening program
D Byng, B Strauch, L Gnas, C Leibig, O Stephan, S Bunk, G Hecht
European Journal of Radiology 152, 110321, 2022
232022
Machine Learning based Predictions of Subjective Refractive Errors of the Human Eye.
A Leube, C Leibig, A Ohlendorf, S Wahl
HEALTHINF, 199-205, 2019
62019
Nationwide real-world implementation of AI for cancer detection in population-based mammography screening
N Eisemann, S Bunk, T Mukama, H Baltus, SA Elsner, T Gomille, G Hecht, ...
Nature Medicine, 1-8, 2025
52025
Apparatus for ascertaining predicted subjective refraction data or predicted correction values, and computer program
A Ohlendorf, S Wahl, C Leibig, A Leube
US Patent App. 16/404,991, 2019
42019
Abstract ot3-18-03: the praim study: a prospective multicenter observational study of an integrated artificial intelligence system with live monitoring
D Byng, N Eisemann, D Schüler, S Bunk, C Leibig, M Brehmer, S Elsner, ...
Cancer Research 83 (5_Supplement), OT3-18-03-OT3-18-03, 2023
32023
A machine learning approach to determine refractive errors of the eye
A Ohlendorf, A Leube, C Leibig, S Wahl
Investigative Ophthalmology & Visual Science 58 (8), 1136-1136, 2017
32017
Discriminative Bayesian neural networks know what they do not know
C Leibig, S Wahl
NIPS Workshop: Deep Learning and Representation Learning, 2016
22016
Resolution Limit of Neurochip Data
C Leibig, T Wachtler, G Zeck
Front. Comput. Neurosci. Conference Abstract: BC11: Computational …, 2011
22011
Unsupervised neural spike identification for large-scale, high-density micro-electrode arrays
C Leibig
Universität Tübingen, 2016
12016
Strategies for integrating artificial intelligence into mammography screening programmes: a retrospective simulation analysis
ZV Fisches, M Ball, T Mukama, V Štih, NR Payne, SE Hickman, FJ Gilbert, ...
The Lancet Digital Health 6 (11), e803-e814, 2024
2024
System and method for identifying breast cancer
C Leibig, S Bunk, M Brandstaetter
US Patent App. 17/731,229, 2023
2023
Brustkrebsvorsorge: künstliche Intelligenz verbessert Diagnose
C Leibig
TumorDiagn u Ther 43, 2022
2022
AI-based prevention of interval cancers in a population-based breast cancer program
D Byng, B Strauch, L Gnas, C Leibig, O Stephan, S Bunk, G Hecht
‘ONE SIZE DOES NOT FIT ALL’, 213, 2022
2022
Method for optimizing an optical aid by way of automatic subjective visual performance measurement
A Leube, C Leibig, A Ohlendorf, S Wahl
US Patent 11,143,886, 2021
2021
Activity patterns of degenerating retinal projection neurons mapped with a CMOS multitransistorarray
C Leibig
Universität Konstanz Konstanz, 2010
2010
Leveraging uncertainty information from deep
C Leibig, V Allken, MS Ayhan, P Berens, S Wahl
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20