Folgen
Zhaobin Mo
Titel
Zitiert von
Zitiert von
Jahr
A physics-informed deep learning paradigm for car-following models
Z Mo, R Shi, X Di
Transportation research part C: emerging technologies 130, 103240, 2021
1522021
A physics-informed deep learning paradigm for traffic state and fundamental diagram estimation
R Shi, Z Mo, K Huang, X Di, Q Du
IEEE Transactions on Intelligent Transportation Systems 23 (8), 11688-11698, 2021
1082021
Physics-informed deep learning for traffic state estimation: A hybrid paradigm informed by second-order traffic models
R Shi, Z Mo, X Di
Proceedings of the AAAI Conference on Artificial Intelligence 35 (1), 540-547, 2021
1022021
CVLight: Decentralized learning for adaptive traffic signal control with connected vehicles
Z Mo, W Li, Y Fu, K Ruan, X Di
Transportation research part C: emerging technologies 141, 103728, 2022
502022
Multimedia fusion at semantic level in vehicle cooperactive perception
Z Xiao, Z Mo, K Jiang, D Yang
2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), 1-6, 2018
382018
Physics-informed deep learning for traffic state estimation: A survey and the outlook
X Di, R Shi, Z Mo, Y Fu
Algorithms 16 (6), 305, 2023
312023
Cluster naturalistic driving encounters using deep unsupervised learning
S Li, W Wang, Z Mo, D Zhao
2018 IEEE Intelligent Vehicles Symposium (IV), 1354-1359, 2018
302018
Trafficflowgan: Physics-informed flow based generative adversarial network for uncertainty quantification
Z Mo, Y Fu, D Xu, X Di
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2022
282022
Uncertainty quantification of car-following behaviors: physics-informed generative adversarial networks
Z Mo, X Di
the 28th ACM SIGKDD in conjunction with the 11th International Workshop on …, 2022
182022
Quantifying uncertainty in traffic state estimation using generative adversarial networks
Z Mo, Y Fu, X Di
2022 IEEE 25th International Conference on Intelligent Transportation …, 2022
172022
PI-NeuGODE: Physics-Informed Graph Neural Ordinary Differential Equations for Spatiotemporal Trajectory Prediction
Z Mo, Y Fu, X Di
Proceedings of the 23rd International Conference on Autonomous Agents and …, 2024
132024
Longitudinal control strategy for connected electric vehicle with regenerative braking in eco-approach and departure
R Bautista-Montesano, R Galluzzi, Z Mo, Y Fu, R Bustamante-Bello, X Di
Applied Sciences 13 (8), 5089, 2023
92023
Demonstrating stability within parallel connection as a basis for building large-scale battery systems
Z Li, A Zuo, Z Mo, M Lin, C Wang, J Zhang, MH Hofmann, A Jossen
Cell Reports Physical Science 3 (12), 2022
72022
Detecting mild cognitive impairment and dementia in older adults using naturalistic driving data and interaction-based classification from influence score
X Di, Y Yin, Y Fu, Z Mo, SH Lo, C DiGuiseppi, DW Eby, L Hill, TJ Mielenz, ...
Artificial Intelligence in Medicine 138, 102510, 2023
52023
Clustering of naturalistic driving encounters using unsupervised learning
S Li, W Wang, Z Mo, D Zhao
arXiv preprint arXiv:1802.10214, 2018
52018
Robust Data Sampling in Machine Learning: A Game-Theoretic Framework for Training and Validation Data Selection
Z Mo, X Di, R Shi
Games 14 (1), 13, 2023
32023
Cross-and Context-Aware Attention Based Spatial-Temporal Graph Convolutional Networks for Human Mobility Prediction
Z Mo, H Xiang, X Di
ACM Transactions on Spatial Algorithms and Systems 10 (4), 1-25, 2024
22024
Drivegenvlm: Real-world video generation for vision language model based autonomous driving
Y Fu, A Jain, X Chen, Z Mo, X Di
2024 IEEE International Automated Vehicle Validation Conference (IAVVC), 1-6, 2024
22024
Can llms understand social norms in autonomous driving games?
B Wang, H Duan, Y Feng, X Chen, Y Fu, Z Mo, X Di
2024 IEEE International Automated Vehicle Validation Conference (IAVVC), 1-4, 2024
22024
Causal Adjacency Learning for Spatiotemporal Prediction Over Graphs
Z Mo, Q Liu, B Yan, L Zhang, X Di
27th IEEE International Conference on Intelligent Transportation Systems …, 2024
22024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20