Folgen
Can Kaymakci
Can Kaymakci
Bestätigte E-Mail-Adresse bei ipa.fraunhofer.de
Titel
Zitiert von
Zitiert von
Jahr
Explainable long-term building energy consumption prediction using QLattice
S Wenninger, C Kaymakci, C Wiethe
Applied Energy 308, 118300, 2022
812022
A Holistic Framework for AI Systems in Industrial Applications
C Kaymakci, S Wenninger, A Sauer
Proceedings of WI2021, 2021
342021
Explainability and interpretability in electric load forecasting using machine learning techniques–A review
L Baur, K Ditschuneit, M Schambach, C Kaymakci, T Wollmann, A Sauer
Energy and AI, 100358, 2024
282024
Integrating Energy Flexibility in Production Planning and Control-An Energy Flexibility Data Model-Based Approach
L Bank, S Wenninger, J Köberlein, M Lindner, C Kaymakci, M Weigold, ...
ESSN: 2701-6277, 2021
232021
A systematic selection process of machine learning cloud services for manufacturing SMEs
C Kaymakci, S Wenninger, P Pelger, A Sauer
Computers 11 (1), 14, 2022
222022
Energy anomaly detection in industrial applications with long short-term memory-based autoencoders
C Kaymakci, S Wenninger, A Sauer
Procedia CIRP 104, 182-187, 2021
212021
Wie IT die Energieflexibilitätsvermarktung von Industrieunternehmen ermöglicht und die Energiewende unterstützt
D Bauer, A Hieronymus, C Kaymakci, J Köberlein, J Schimmelpfennig, ...
HMD Praxis der Wirtschaftsinformatik 58 (1), 102-115, 2020
202020
How sustainable is machine learning in energy applications?–the sustainable machine learning balance sheet
S Wenninger, C Kaymakci, C Wiethe, J Römmelt, L Baur, B Häckel, ...
132022
Industrial fexibility options and their applications in a future energy system
HU Buhl, N Gabrek, JN Gerdes, C Kaymakci, K Rauland, F Richter, ...
Fraunhofer FIT, 2021
82021
Energy Synchronization Platform Concept to Enable and Streamline Automated Industrial Demand Response
C van Stiphoudt, S POTENCIANO MENCI, C Kaymakci, S Wenninger, ...
Energy Proceedings, 2024
52024
Deriving Digital Energy Platform Archetypes for Manufacturing–A Data-Driven Clustering Approach
S Duda, L Fabri, C Kaymakci, S Wenninger, A Sauer
ESSN: 2701-6277, 54-64, 2023
52023
Structuring the Digital Energy Platform Jungle: Development of a Multi-Layer Taxonomy and Implications for Practice
S Duda, C Kaymakci, J Köberlein, S Wenninger, T Haubner, A Sauer, ...
Proceedings of the Conference on Production Systems and Logistics: CPSL 2022 …, 2022
52022
Intelligent energy systems as enabler for increased resilience of manufacturing systems
D Bauer, C Kaymakci, T Bauernhansl, A Sauer
Procedia CIRP 104, 217-222, 2021
42021
Federated Machine Learning Architecture for Energy-Efficient Industrial Applications
C Kaymakci, L Baur, A Sauer
ESSN: 2701-6277, 2021
42021
Potentials and challenges of artificial intelligence in financial technologies
L Fabri, S Wenninger, C Kaymakci, S Beck, T Klos, S Wetzstein
32022
Optimierung auf der Energiesynchronisationsplattform
J Schilp, L Bank, J Köberlein, T Bauernhansl, A Sauer, C Kaymakci, ...
32021
Demonstratoren der Energiesynchronisationsplattform
T Bauernhansl, A Sauer, C Kaymakci, A Schlereth, J Schilp, ...
32021
Konzept der Energiesynchronisationsplattform. Diskussionspapier V3
G Reinhart, L Bank, M Brugger, A Hieronymus, J Köberlein, S Roth, ...
Fraunhofer IGCV, 2020
32020
Structuring Federated Learning Applications-A Literature Analysis and Taxonomy
P Karnebogen, C Kaymakci, L Willburger, B Häckel, A Sauer
European Conference on Information Systems 2023, 2023
22023
Determining the Product-Specific Energy Footprint in Manufacturing
P Pelger, C Kaymakci, S Wenninger, L Fabri, A Sauer
Congress of the German Academic Association for Production Technology, 781-790, 2022
22022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20