On the opportunities and risks of foundation models R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ... arXiv preprint arXiv:2108.07258, 2021 | 4676 | 2021 |
Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ... arXiv preprint arXiv:2312.11805, 2023 | 2464 | 2023 |
GQA: A new dataset for real-world visual reasoning and compositional question answering DA Hudson, CD Manning arXiv preprint arXiv:1902.09506, 2019 | 2109 | 2019 |
Holistic evaluation of language models P Liang, R Bommasani, T Lee, D Tsipras, D Soylu, M Yasunaga, Y Zhang, ... arXiv preprint arXiv:2211.09110, 2022 | 1181 | 2022 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ... arXiv preprint arXiv:2403.05530, 2024 | 972 | 2024 |
Compositional attention networks for machine reasoning DA Hudson, CD Manning arXiv preprint arXiv:1803.03067, 2018 | 656 | 2018 |
Learning by abstraction: The neural state machine D Hudson, CD Manning Advances in neural information processing systems 32, 2019 | 326 | 2019 |
Generative adversarial transformers DA Hudson, L Zitnick International conference on machine learning, 4487-4499, 2021 | 224 | 2021 |
On the opportunities and risks of foundation models. arXiv R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ... arXiv preprint arXiv:2108.07258, 2021 | 133 | 2021 |
On the opportunities and risks of foundation models. arXiv 2021 R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ... arXiv preprint arXiv:2108.07258, 2023 | 107 | 2023 |
& Liang, P.(2021). On the opportunities and risks of foundation models R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ... arXiv preprint arXiv:2108.07258, 0 | 89 | |
On the opportunities and risks of foundation models (arXiv: 2108.07258). arXiv R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ... | 87 | 2022 |
On the opportunities and risks of foundation models (2021) R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ... arXiv preprint arXiv:2108.07258, 2022 | 74 | 2022 |
Compositional transformers for scene generation D Arad Hudson, L Zitnick Advances in neural information processing systems 34, 9506-9520, 2021 | 51 | 2021 |
SLM: Learning a discourse language representation with sentence unshuffling H Lee, DA Hudson, K Lee, CD Manning arXiv preprint arXiv:2010.16249, 2020 | 46 | 2020 |
others (2021). On the opportunities and risks of foundation models R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ... arXiv preprint arXiv:2108.07258 24, 0 | 29 | |
Soda: Bottleneck diffusion models for representation learning DA Hudson, D Zoran, M Malinowski, AK Lampinen, A Jaegle, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 25 | 2024 |
Scaling instructable agents across many simulated worlds MA Raad, A Ahuja, C Barros, F Besse, A Bolt, A Bolton, B Brownfield, ... arXiv preprint arXiv:2404.10179, 2024 | 10 | 2024 |
Neural Assets: 3D-Aware Multi-Object Scene Synthesis with Image Diffusion Models Z Wu, Y Rubanova, R Kabra, DA Hudson, I Gilitschenski, Y Aytar, ... arXiv preprint arXiv:2406.09292, 2024 | 5 | 2024 |
Scaling instructable agents across many simulated worlds M Abi Raad, A Ahuja, C Barros, F Besse, A Bolt, A Bolton, B Brownfield, ... arXiv e-prints, arXiv: 2404.10179, 2024 | 5 | 2024 |