Asymptotic analysis of resonances in nonlinear vibrations of the 3-dof pendulum J Awrejcewicz, R Starosta, G Sypniewska-Kamińska Differential Equations and Dynamical Systems 21, 123-140, 2013 | 64 | 2013 |
Asymptotic analysis of kinematically excited dynamical systems near resonances R Starosta, G Sypniewska-Kamińska, J Awrejcewicz Nonlinear Dynamics 68, 459-469, 2012 | 61 | 2012 |
Parametric and external resonances in kinematically and externally excited nonlinear spring pendulum R Starosta, G Sypniewska–Kamińska, J Awrejcewicz International Journal of Bifurcation and Chaos 21 (10), 3013-3021, 2011 | 45 | 2011 |
Stationary and transient resonant response of a spring pendulum J Awrejcewicz, R Starosta, G Sypniewska-Kamińska Procedia IUTAM 19, 201-208, 2016 | 31 | 2016 |
Analysing regular nonlinear vibrations of nano/micro plates based on the nonlocal theory and combination of reduced order modelling and multiple scale method J Awrejcewicz, G Sypniewska-Kamińska, O Mazur Mechanical Systems and Signal Processing 163, 108132, 2022 | 26 | 2022 |
Asymptotic multiple scale method in time domain: multi-degree-of-freedom stationary and nonstationary dynamics J Awrejcewicz, R Starosta, G Sypniewska-Kamińska CRC Press, 2022 | 25 | 2022 |
Decomposition of governing equations in the analysis of resonant response of a nonlinear and non-ideal vibrating system J Awrejcewicz, R Starosta, G Sypniewska-Kamińska Nonlinear Dynamics 82, 299-309, 2015 | 25 | 2015 |
Complexity of resonances exhibited by a nonlinear micromechanical gyroscope: an analytical study J Awrejcewicz, R Starosta, G Sypniewska-Kamińska Nonlinear Dynamics 97, 1819-1836, 2019 | 20 | 2019 |
Quantifying non-linear dynamics of mass-springs in series oscillators via asymptotic approach R Starosta, G Sypniewska-Kamińska, J Awrejcewicz Mechanical Systems and Signal Processing 89, 149-158, 2017 | 19 | 2017 |
Resonance study of spring pendulum based on asymptotic solutions with polynomial approximation in quadratic means G Sypniewska-Kamińska, J Awrejcewicz, H Kamiński, R Salamon Meccanica 56, 963-980, 2021 | 16 | 2021 |
Two approaches in the analytical investigation of the spring pendulum G Sypniewska-Kamińska, R Starosta, J Awrejcewicz Vibrations in Physical Systems 29, 2018 | 16 | 2018 |
Asymptotic analysis and limiting phase trajectories in the dynamics of spring pendulum J Awrejcewicz, R Starosta, G Sypniewska-Kamińska Applied Non-Linear Dynamical Systems, 161-173, 2014 | 16 | 2014 |
An interval finite difference method for the bioheat transfer problem described by the pennes equation with uncertain parameters MA Jankowska, G Sypniewska-Kamińska Mechanics and Control 31 (2), 77-84, 2012 | 10 | 2012 |
Quantifying nonlinear dynamics of a spring pendulum with two springs in series: an analytical approach G Sypniewska-Kamińska, R Starosta, J Awrejcewicz Nonlinear Dynamics 110 (1), 1-36, 2022 | 8 | 2022 |
Nonlinear vibration of a lumped system with springs-in-series J Awrejcewicz, R Starosta, G Sypniewska-Kamińska Meccanica 56 (4), 753-767, 2021 | 8 | 2021 |
Interval finite difference method for solving the one-dimensional heat conduction problem with heat sources MA Jankowska, G Sypniewska-Kaminska Applied Parallel and Scientific Computing: 11th International Conference …, 2013 | 8 | 2013 |
Decomposition of the Equations of Motion in the Analysis of Dynamics of a 3‐DOF Nonideal System J Awrejcewicz, R Starosta, G Sypniewska-Kamińska Mathematical Problems in Engineering 2014 (1), 816840, 2014 | 7 | 2014 |
Resonances in kinematically driven nonlinear spring pendulum R Starosta, G Sypniewska-Kamińska, J Awrejcewicz DSTA 11th Conference, 103-108, 2011 | 7 | 2011 |
Plane motion of a rigid body suspended on nonlinear spring-damper R Starosta, G Sypniewska-Kamińska, J Awrejcewicz Problems of Nonlinear Mechanics and Physics of Materials, 157-170, 2019 | 5 | 2019 |
Motion of double pendulum colliding with an obstacle of rough surface G Sypniewska-Kamińska, R Starosta, J Awrejcewicz Archive of Applied Mechanics 87, 841-852, 2017 | 5 | 2017 |