Folgen
Ramón Alberto Mollineda Cárdenas
Ramón Alberto Mollineda Cárdenas
Associate Professor, University Jaume I
Bestätigte E-Mail-Adresse bei uji.es
Titel
Zitiert von
Zitiert von
Jahr
On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
V García, JS Sánchez, RA Mollineda
Knowledge-Based Systems 25 (1), 13-21, 2012
4392012
On the k-NN performance in a challenging scenario of imbalance and overlapping
V García, RA Mollineda, JS Sánchez
Pattern Analysis and Applications 11, 269-280, 2008
2782008
Index of balanced accuracy: A performance measure for skewed class distributions
V García, RA Mollineda, JS Sánchez
Iberian conference on pattern recognition and image analysis, 441-448, 2009
2602009
An empirical study of the behavior of classifiers on imbalanced and overlapped data sets
V García, J Sánchez, R Mollineda
Progress in Pattern Recognition, Image Analysis and Applications: 12th …, 2007
1622007
The class imbalance problem in pattern classification and learning
V Garcia, JS Sanchez, RAM Cardenas, RA Eleuterio, JM Sotoca
Actas del IV Taller de Minería de Datos y Aprendizaje:[TAMIDA 2007], 283-292, 2007
1372007
An analysis of how training data complexity affects the nearest neighbor classifiers
JS Sánchez, RA Mollineda, JM Sotoca
Pattern Analysis and Applications 10, 189-201, 2007
1272007
Theoretical analysis of a performance measure for imbalanced data
V García, RA Mollineda, JS Sánchez
2010 20th International Conference on Pattern Recognition, 617-620, 2010
952010
Data characterization for effective prototype selection
RA Mollineda, JS Sánchez, JM Sotoca
Pattern Recognition and Image Analysis: Second Iberian Conference, IbPRIA …, 2005
892005
An efficient prototype merging strategy for the condensed 1-NN rule through class-conditional hierarchical clustering
RA Mollineda, FJ Ferri, E Vidal
Pattern Recognition 35 (12), 2771-2782, 2002
832002
Surrounding neighborhood-based SMOTE for learning from imbalanced data sets
V García, JS Sánchez, R Martín-Félez, RA Mollineda
Progress in Artificial Intelligence 1, 347-362, 2012
772012
Combined effects of class imbalance and class overlap on instance-based classification
V García, R Alejo, JS Sánchez, JM Sotoca, RA Mollineda
Intelligent Data Engineering and Automated Learning–IDEAL 2006: 7th …, 2006
752006
Vision-based gait impairment analysis for aided diagnosis
J Ortells, MT Herrero-Ezquerro, RA Mollineda
Medical & biological engineering & computing 56, 1553-1564, 2018
622018
Improving the performance of the RBF neural networks trained with imbalanced samples
R Alejo, V García, JM Sotoca, RA Mollineda, JS Sánchez
Computational and Ambient Intelligence: 9th International Work-Conference on …, 2007
592007
Cyclic sequence alignments: Approximate versus optimal techniques
RA Mollineda, E Vidal, F Casacuberta
International Journal of Pattern Recognition and Artificial Intelligence 16 …, 2002
592002
The class imbalance problem in pattern classification and learning
R Mollineda, R Alejo, J Sotoca
II Congreso Espanol de Informática (CEDI 2007). ISBN, 978-84, 2007
562007
A review of data complexity measures and their applicability to pattern classification problems
JM Sotoca, JS Sánchez, RA Mollineda
Actas del III Taller Nacional de Mineria de Datos y Aprendizaje. TAMIDA 77, 2005
512005
A meta-learning framework for pattern classication by means of data complexity measures
JM Sotoca, RA Mollineda, JS Sánchez
Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial …, 2006
442006
Exploring the performance of resampling strategies for the class imbalance problem
V García, JS Sánchez, RA Mollineda
Trends in Applied Intelligent Systems: 23rd International Conference on …, 2010
372010
Face gender classification: A statistical study when neutral and distorted faces are combined for training and testing purposes
Y Andreu, P García-Sevilla, RA Mollineda
Image and Vision Computing 32 (1), 27-36, 2014
362014
A relative approach to hierarchical clustering
RA Mollineda, E Vidal
Pattern Recognition and Applications 56, 19-28, 2000
362000
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20