Folgen
Will Chapman
Will Chapman
National Center for Atmospheric Research
Bestätigte E-Mail-Adresse bei ucsd.edu
Titel
Zitiert von
Zitiert von
Jahr
100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world
MZ Jacobson, MA Delucchi, ZAF Bauer, SC Goodman, WE Chapman, ...
Joule 1 (1), 108-121, 2017
12292017
The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues
AJ Stewart, W Chapman, GI Jenkins, I Graham, T Martin, A Crozier
Plant, Cell & Environment 24 (11), 1189-1197, 2001
4042001
Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts
PB Gibson, WE Chapman, A Altinok, L Delle Monache, MJ DeFlorio, ...
Communications Earth & Environment 2 (1), 159, 2021
1262021
Improving atmospheric river forecasts with machine learning
WE Chapman, AC Subramanian, L Delle Monache, SP Xie, FM Ralph
Geophysical Research Letters 46 (17-18), 10627-10635, 2019
932019
Towards implementing artificial intelligence post-processing in weather and climate: Proposed actions from the Oxford 2019 workshop
SE Haupt, W Chapman, SV Adams, C Kirkwood, JS Hosking, ...
Philosophical Transactions of the Royal Society A 379 (2194), 20200091, 2021
842021
ClimateNet: An expert-labelled open dataset and Deep Learning architecture for enabling high-precision analyses of extreme weather
Prabhat, K Kashinath, M Mudigonda, S Kim, L Kapp-Schwoerer, ...
Geoscientific Model Development Discussions 2020, 1-28, 2020
742020
100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017; 1: 108–21
MZ Jacobson, MA Delucchi, ZAF Bauer, SC Goodman, WE Chapman, ...
74
Probabilistic predictions from deterministic atmospheric river forecasts with deep learning
WE Chapman, L Delle Monache, S Alessandrini, AC Subramanian, ...
Monthly Weather Review 150 (1), 215-234, 2022
532022
100% Clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for 139 countries of the world By 2050
MZ Jacobson, MA Delucchi, ZAF Bauer, C Savannah, WE Chapman, ...
url: http://web. stanford. edu/group/efmh/jacobson/Articles/I/WWS-50-USState …, 2015
29*2015
Monthly modulations of ENSO teleconnections: Implications for potential predictability in North America
WE Chapman, AC Subramanian, SP Xie, MD Sierks, FM Ralph, Y Kamae
Journal of Climate 34 (14), 5899-5921, 2021
262021
Enhancing Regional Climate Downscaling through Advances in Machine Learning
N Rampal, S Hobeichi, PB Gibson, J Baño-Medina, G Abramowitz, ...
Artificial Intelligence for the Earth Systems 3 (2), 230066, 2024
212024
Deep learning forecast uncertainty for precipitation over the Western United States
W Hu, M Ghazvinian, WE Chapman, A Sengupta, FM Ralph, ...
Monthly Weather Review 151 (6), 1367-1385, 2023
182023
Improving precipitation forecasts with convolutional neural networks
A Badrinath, L Delle Monache, N Hayatbini, W Chapman, F Cannon, ...
Weather and Forecasting 38 (2), 291-306, 2023
122023
Post-processing rainfall in a high-resolution simulation of the 1994 Piedmont flood
S Meech, S Alessandrini, W Chapman, L Delle Monache
Bulletin of Atmospheric Science and Technology, 1-13, 2021
112021
Increase in MJO predictability under global warming
D Du, AC Subramanian, W Han, WE Chapman, JB Weiss, E Bradley
Nature Climate Change 14 (1), 68-74, 2024
82024
Using deep learning for an analysis of atmospheric rivers in a high‐resolution large ensemble climate data set
TB Higgins, AC Subramanian, A Graubner, L Kapp‐Schwoerer, ...
Journal of Advances in Modeling Earth Systems 15 (4), e2022MS003495, 2023
82023
Direct and indirect effects—An information theoretic perspective
G Schamberg, W Chapman, SP Xie, TP Coleman
Entropy 22 (8), 854, 2020
72020
Supermodeling: improving predictions with an ensemble of interacting models
F Schevenhoven, N Keenlyside, F Counillon, A Carrassi, WE Chapman, ...
Bulletin of the American Meteorological Society 104 (9), E1670-E1686, 2023
62023
Training the next generation of researchers in the science and application of atmospheric rivers
AM Wilson, W Chapman, A Payne, AM Ramos, C Boehm, D Campos, ...
Bulletin of the American Meteorological Society 101 (6), E738-E743, 2020
62020
Evidential deep learning: Enhancing predictive uncertainty estimation for earth system science applications
JS Schreck, DJ Gagne, C Becker, WE Chapman, K Elmore, D Fan, ...
Artificial Intelligence for the Earth Systems 3 (4), 230093, 2024
32024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20