Artikel mit Open-Access-Mandaten - Vladimir BogachevWeitere Informationen
Nicht verfügbar: 13
Estimates of densities of stationary distributions and transition probabilities of diffusion processes
VI Bogachev, M Röckner, SV Shaposhnikov
Theory of Probability & Its Applications 52 (2), 209-236, 2008
Mandate: Deutsche Forschungsgemeinschaft
On positive and probability solutions to the stationary Fokker-Planck-Kolmogorov equation.
V Bogachev, M Röckner, S Shaposhnikov
Doklady Mathematics 85 (3), 2012
Mandate: Deutsche Forschungsgemeinschaft
Positive densities of transition probabilities of diffusion processes
VI Bogachev, M Röckner, SV Shaposhnikov
Theory of Probability & Its Applications 53 (2), 194-215, 2009
Mandate: Deutsche Forschungsgemeinschaft
Uniqueness problems for degenerate Fokker–Planck–Kolmogorov equations
VI Bogachev, M Röckner, SV Shaposhnikov
Journal of Mathematical Sciences 207, 147-165, 2015
Mandate: Deutsche Forschungsgemeinschaft
On Convergence to Stationary Distributions for Solutions of Nonlinear Fokker–Planck–Kolmogorov Equations.
VI Bogachev, M Röckner, SV Shaposhnikov
Journal of Mathematical Sciences 242 (1), 2019
Mandate: Deutsche Forschungsgemeinschaft
Nonlinear transformations of convex measures
VI Bogachev, AV Kolesnikov
Theory of Probability & Its Applications 50 (1), 34-52, 2006
Mandate: Deutsche Forschungsgemeinschaft
On inequalities relating the Sobolev and Kantorovich norms.
V Bogachev, F Wang, A Shaposhnikov
Doklady Mathematics 93 (3), 2016
Mandate: National Natural Science Foundation of China
On the Equality of Values in the Monge and Kantorovich Problems.
VI Bogachev, AN Kalinin, SN Popova
Journal of Mathematical Sciences 238 (4), 2019
Mandate: Deutsche Forschungsgemeinschaft
On non-uniqueness of probability solutions to the two-dimensional stationary Fokker–Planck–Kolmogorov equation
VI Bogachev, TI Krasovitskii, SV Shaposhnikov
Doklady Mathematics 98, 475-479, 2018
Mandate: Deutsche Forschungsgemeinschaft
On existence of Lyapunov functions for a stationary Kolmogorov equation with a probability solution.
V Bogachev, S Shaposhnikov, M Röckner
Doklady Mathematics 90 (1), 2014
Mandate: Deutsche Forschungsgemeinschaft
Convergence to Stationary Measures in Nonlinear Fokker-Planck-Kolmogorov Equations.
VI Bogachev, M Röckner, SV Shaposhnikov
Doklady Mathematics 98 (2), 2018
Mandate: Deutsche Forschungsgemeinschaft
Uniqueness of preimages of measures
VI Bogachev, YV Sadovnichii, VV Fedorchuk
Doklady Mathematics 73, 344-348, 2006
Mandate: Deutsche Forschungsgemeinschaft
Estimates of distances between transition probabilities of diffusions.
V Bogachev, M Röckner, S Shaposhnikov
Doklady Mathematics 93 (2), 2016
Mandate: Deutsche Forschungsgemeinschaft
Verfügbar: 33
On parabolic equations for measures
VI Bogachev, G Da Prato, M Röckner
Communications in Partial Differential Equations 33 (3), 397-418, 2008
Mandate: Deutsche Forschungsgemeinschaft
Uniqueness of solutions to weak parabolic equations for measures
VI Bogachev, G Da Prato, M Röckner, W Stannat
Bulletin of the London Mathematical Society 39 (4), 631-640, 2007
Mandate: Deutsche Forschungsgemeinschaft
Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations
VI Bogachev, M Röckner, SV Shaposhnikov
Journal of Functional Analysis 271 (5), 1262-1300, 2016
Mandate: Deutsche Forschungsgemeinschaft
Existence and uniqueness of solutions for Fokker–Planck equations on Hilbert spaces
V Bogachev, G Da Prato, M Röckner
Journal of Evolution Equations 10, 487-509, 2010
Mandate: Deutsche Forschungsgemeinschaft
Elliptic equations for measures: regularity and global bounds of densities
VI Bogachev, NV Krylov, M Röckner
Journal de mathématiques pures et appliquées 85 (6), 743-757, 2006
Mandate: Deutsche Forschungsgemeinschaft
Weak solutions to the stochastic porous media equation via Kolmogorov equations: the degenerate case
V Barbu, VI Bogachev, G Da Prato, M Röckner
Journal of Functional Analysis 237 (1), 54-75, 2006
Mandate: Deutsche Forschungsgemeinschaft
Uniqueness for solutions of Fokker–Planck equations on infinite dimensional spaces
V Bogachev, GD Prato, M Röckner
Communications in Partial Differential Equations 36 (6), 925-939, 2011
Mandate: Deutsche Forschungsgemeinschaft
Angaben zur Publikation und Finanzierung werden automatisch von einem Computerprogramm ermittelt