Folgen
Shizhe Diao
Shizhe Diao
NVIDIA Research
Bestätigte E-Mail-Adresse bei nvidia.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Raft: Reward ranked finetuning for generative foundation model alignment
H Dong, W Xiong, D Goyal, Y Zhang, W Chow, R Pan, S Diao, J Zhang, ...
arXiv preprint arXiv:2304.06767, 2023
3232023
Active prompting with chain-of-thought for large language models
S Diao, P Wang, Y Lin, R Pan, X Liu, T Zhang
arXiv preprint arXiv:2302.12246, 2023
1842023
ZEN: Pre-training Chinese text encoder enhanced by n-gram representations
S Diao, J Bai, Y Song, T Zhang, Y Wang
Findings of EMNLP 2020, 2019
1452019
Automatic prompt augmentation and selection with chain-of-thought from labeled data
KS Shum*, S Diao*, T Zhang
arXiv preprint arXiv:2302.12822, 2023
1142023
Detgpt: Detect what you need via reasoning
R Pi*, J Gao*, S Diao*, R Pan, H Dong, J Zhang, L Yao, J Han, H Xu, ...
arXiv preprint arXiv:2305.14167, 2023
982023
Black-Box Prompt Learning for Pre-trained Language Models
S Diao, Z Huang, R Xu, X Li, Y Lin, X Zhou, T Zhang
Transactions on Machine Learning Research (TMLR), 2022
952022
R-Tuning: Instructing Large Language Models to Say ‘I Don’t Know’
H Zhang*, S Diao*, Y Lin*, Y Fung, Q Lian, X Wang, Y Chen, H Ji, T Zhang
Proceedings of the 2024 Conference of the North American Chapter of the …, 2024
73*2024
Speciality vs generality: An empirical study on catastrophic forgetting in fine-tuning foundation models
Y Lin, L Tan, H Lin, Z Zheng, R Pi, J Zhang, S Diao, H Wang, H Zhao, ...
arXiv preprint arXiv:2309.06256, 2023
70*2023
Unitime: A language-empowered unified model for cross-domain time series forecasting
X Liu, J Hu, Y Li, S Diao, Y Liang, B Hooi, R Zimmermann
Proceedings of the ACM on Web Conference 2024, 4095-4106, 2024
652024
Taming pre-trained language models with n-gram representations for low-resource domain adaptation
S Diao, R Xu, H Su, Y Jiang, Y Song, T Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational …, 2021
612021
Lmflow: An extensible toolkit for finetuning and inference of large foundation models
S Diao*, R Pan*, H Dong*, KS Shum, J Zhang, W Xiong, T Zhang
arXiv preprint arXiv:2306.12420, 2023
522023
Llm pruning and distillation in practice: The minitron approach
ST Sreenivas, S Muralidharan, R Joshi, M Chochowski, M Patwary, ...
arXiv preprint arXiv:2408.11796, 2024
49*2024
Efficient neural network training via forward and backward propagation sparsification
X Zhou, W Zhang, Z Chen, S Diao, T Zhang
Advances in neural information processing systems 34, 15216-15229, 2021
492021
Arithmetic control of llms for diverse user preferences: Directional preference alignment with multi-objective rewards
H Wang, Y Lin, W Xiong, R Yang, S Diao, S Qiu, H Zhao, T Zhang
arXiv preprint arXiv:2402.18571, 2024
422024
Towards unifying medical vision-and-language pre-training via soft prompts
Z Chen*, S Diao*, B Wang, G Li, X Wan
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
322023
Mixture-of-domain-adapters: Decoupling and injecting domain knowledge to pre-trained language models memories
S Diao*, T Xu*, R Xu, J Wang, T Zhang
arXiv preprint arXiv:2306.05406, 2023
302023
Vlue: A multi-task multi-dimension benchmark for evaluating vision-language pre-training
W Zhou*, Y Zeng*, S Diao*, X Zhang*
International Conference on Machine Learning, 27395-27411, 2022
29*2022
Mitigating the alignment tax of rlhf
Y Lin*, H Lin*, W Xiong*, S Diao*, J Liu, J Zhang, R Pan, H Wang, W Hu, ...
Proceedings of the 2024 Conference on Empirical Methods in Natural Language …, 2024
27*2024
TILGAN: transformer-based implicit latent GAN for diverse and coherent text generation
S Diao*, X Shen*, K Shum, Y Song, T Zhang
Findings of the Association for Computational linguistics: ACL-IJCNLP 2021 …, 2021
262021
LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning
R Pan, X Liu, S Diao, R Pi, J Zhang, C Han, T Zhang
arXiv preprint arXiv:2403.17919, 2024
25*2024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20