Folgen
Ethan Prihar
Ethan Prihar
Sonstige NamenEthan Benjamin Prihar, Ethan B. Prihar
Bestätigte E-Mail-Adresse bei epfl.ch - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Mathbert: A pre-trained language model for general nlp tasks in mathematics education
JT Shen, M Yamashita, E Prihar, N Heffernan, X Wu, B Graff, D Lee
arXiv preprint arXiv:2106.07340, 2021
782021
Classifying math knowledge components via task-adaptive pre-trained BERT
JT Shen, M Yamashita, E Prihar, N Heffernan, X Wu, S McGrew, D Lee
Artificial Intelligence in Education: 22nd International Conference, AIED …, 2021
282021
Toward personalizing students' education with crowdsourced tutoring
E Prihar, T Patikorn, A Botelho, A Sales, N Heffernan
Proceedings of the Eighth ACM Conference on Learning@ Scale, 37-45, 2021
272021
Comparing different approaches to generating mathematics explanations using large language models
E Prihar, M Lee, M Hopman, AT Kalai, S Vempala, A Wang, G Wickline, ...
International Conference on Artificial Intelligence in Education, 290-295, 2023
222023
Exploring common trends in online educational experiments
E Prihar, M Syed, K Ostrow, S Shaw, A Sales, N Heffernan
Proceedings of the 15th International Conference on Educational Data Mining, 2022
192022
Automatic interpretable personalized learning
E Prihar, A Haim, A Sales, N Heffernan
Proceedings of the Ninth ACM Conference on Learning@ Scale, 1-11, 2022
132022
Extending engine gas path analysis using full flight data
L Tang, AJ Volponi, E Prihar
Turbo Expo: Power for Land, Sea, and Air 58677, V006T05A004, 2019
122019
The Effect of an Intelligent Tutor on Performance on Specific Posttest Problems.
A Sales, E Prihar, N Heffernan, JF Pane
International Educational Data Mining Society, 2021
112021
Cyther: a human-playable, self-tuning robotic zither.
S Barton, E Prihar, P Carvalho
NIME, 319-324, 2017
82017
Toward improving effectiveness of crowdsourced, on-demand assistance from educators in online learning platforms
A Haim, E Prihar, NT Heffernan
International Conference on Artificial Intelligence in Education, 29-34, 2022
62022
Using Auxiliary Data to Boost Precision in the Analysis of A/B Tests on an Online Educational Platform: New Data and New Results
AC Sales, EB Prihar, JA Gagnon-Bartsch, NT Heffernan
arXiv preprint arXiv:2306.06273, 2023
52023
A Bandit You Can Trust
E Prihar, A Sales, N Heffernan
Proceedings of the 31st ACM Conference on User Modeling, Adaptation and …, 2023
32023
More powerful a/b testing using auxiliary data and deep learning
AC Sales, E Prihar, J Gagnon-Bartsch, A Gurung, NT Heffernan
International Conference on Artificial Intelligence in Education, 524-527, 2022
32022
Identifying struggling students by comparing online tutor clickstreams
E Prihar, A Moore, N Heffernan
International Conference on Artificial Intelligence in Education, 290-295, 2021
32021
Assessing the ability of Large Language Models in Generating Mathematics Explanations
A Wang, E Prihar, N Heffernan
Learning@ Scale (L@ S’23), July 20–22, 2023, Copenhagen, Denmark., 2023
22023
Identifying explanations within student-tutor chat logs
E Prihar, A Moore, N Heffernan
Proceedings of the 15th International Conference on Educational Data Mining, 773, 2022
22022
Can Large Language Models Generate Middle School Mathematics Explanations Better Than Human Teachers?
A Wang, E Prihar, A Haim, N Heffernan
International Conference on Artificial Intelligence in Education, 242-250, 2024
12024
Effective Evaluation of Online Learning Interventions with Surrogate Measures
E Prihar
In The Proceedings of the 16th International Conference on Educational Data …, 2023
12023
The great challenges and opportunities of the next 20 years
MMT Rodrigo, J Vassileva, HC Lane, P Brusilovsky, S Sosnovsky, ...
Handbook of Artificial Intelligence in Education, 606-649, 2023
12023
Deep Learning or Deep Ignorance? Comparing Untrained Recurrent Models in Educational Contexts
AF Botelho, E Prihar, NT Heffernan
International Conference on Artificial Intelligence in Education, 281-293, 2022
12022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20