UltraFeedback: Boosting Language Models with High-quality Feedback G Cui*, L Yuan*, N Ding, G Yao, W Zhu, Y Ni, G Xie, Z Liu, M Sun ICML, 2024 | 300* | 2024 |
MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback X Wang*, Z Wang*, J Liu, Y Chen, L Yuan, H Peng, H Ji ICLR, 2024 | 102 | 2024 |
Executable Code Actions Elicit Better LLM Agents X Wang, Y Chen, L Yuan, Y Zhang, Y Li, H Peng, H Ji ICML, 2024 | 89 | 2024 |
A Unified Evaluation of Textual Backdoor Learning: Frameworks and Benchmarks G Cui*, L Yuan*, B He, Y Chen, Z Liu, M Sun NeurIPS (Datasets and Benchmarks Track), 2022 | 82 | 2022 |
Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLMs Evaluations L Yuan, Y Chen, G Cui, H Gao, F Zou, X Cheng, H Ji, Z Liu, M Sun NeurIPS (Datasets and Benchmarks Track), 2023 | 77 | 2023 |
Advancing LLM Reasoning Generalists with Preference Trees L Yuan*, G Cui*, H Wang*, N Ding, X Wang, J Deng, B Shan, H Chen, ... ICLR, 2025 | 69 | 2025 |
A Close Look into the Calibration of Pre-trained Language Models Y Chen*, L Yuan*, G Cui, Z Liu, H Ji ACL, 2023 | 48 | 2023 |
CRAFT: Customizing LLMs by Creating and Retrieving from Specialized Toolsets L Yuan*, Y Chen*, X Wang, YR Fung, H Peng, H Ji ICLR, 2024 | 44 | 2024 |
Bridge the gap between CV and NLP! a gradient-based textual adversarial attack framework L Yuan*, Y Zhang*, Y Chen, W Wei Findings of ACL, 2023 | 38 | 2023 |
Controllable preference optimization: Toward controllable multi-objective alignment Y Guo*, G Cui*, L Yuan, N Ding, J Wang, H Chen, B Sun, R Xie, J Zhou, ... EMNLP, 2024 | 25* | 2024 |
FactMix: Using a Few Labeled In-domain Examples to Generalize to Cross-domain Named Entity Recognition L Yang*, L Yuan*, L Cui, W Gao, Y Zhang COLING, 2022 | 25 | 2022 |
Noise contrastive alignment of language models with explicit rewards H Chen, G He, L Yuan, G Cui, H Su, J Zhu NeurIPS, 2024 | 21 | 2024 |
Deep Clustering and Visualization for End-to-End High-Dimensional Data Analysis L Wu*, L Yuan*, G Zhao, H Lin, SZ Li IEEE Transactions on Neural Networks and Learning Systems, 2022 | 18 | 2022 |
Prudent Silence or Foolish Babble? Examining Large Language Models' Responses to the Unknown G Liu, X Wang, L Yuan, Y Chen, H Peng arXiv preprint arXiv:2311.09731, 2023 | 12* | 2023 |
Beat LLMs at Their Own Game: Zero-Shot LLM-Generated Text Detection via Querying ChatGPT B Zhu, L Yuan, G Cui, Y Chen, C Fu, B He, Y Deng, Z Liu, M Sun, M Gu EMNLP, 2023 | 8 | 2023 |
From Adversarial Arms Race to Model-centric Evaluation: Motivating a Unified Automatic Robustness Evaluation Framework Y Chen*, H Gao*, G Cui*, L Yuan, D Kong, H Wu, N Shi, B Yuan, L Huang, ... Findings of ACL, 2023 | 5 | 2023 |
Free Process Rewards without Process Labels L Yuan*, W Li*, H Chen, G Cui, N Ding, K Zhang, B Zhou, Z Liu, H Peng arXiv preprint arXiv:2412.01981, 2024 | 3 | 2024 |
Improving Zero-Shot Generalization of Instruction Tuning by Data Arrangement B He*, N Ding*, C Qian*, J Deng, G Cui, L Yuan, H Hong, H Gao, L Huang, ... arXiv preprint arXiv:2406.11721, 2024, 2024 | 3* | 2024 |
Removing Backdoors in Pre-trained Models by Regularized Continual Pre-training B Zhu*, G Cui*, Y Chen, Y Qin, L Yuan, C Fu, Y Deng, Z Liu, M Sun, M Gu TACL, 2023 | 3 | 2023 |
Process Reinforcement through Implicit Rewards G Cui*, L Yuan*, Z Wang, H Wang, W Li, B He, Y Fan, T Yu, Q Xu, W Chen, ... arXiv preprint arXiv:2502.01456, 2025 | 1 | 2025 |