Generative Imagination Elevates Machine Translation Q Long, M Wang, L Li NAACL 2021, 2021 | 43 | 2021 |
On the Robustness of Language Encoders against Grammatical Errors F Yin, Q Long, T Meng, KW Chang ACL 2020, 2020 | 33 | 2020 |
Backdoor attacks on dense passage retrievers for disseminating misinformation Q Long, Y Deng, LL Gan, W Wang, S Jialin Pan arXiv e-prints, arXiv: 2402.13532, 2024 | 24 | 2024 |
Domain Confused Contrastive Learning for Unsupervised Domain Adaptation Q Long, T Luo, W Wang, S Pan NAACL 2022, 2022 | 20 | 2022 |
Adapt in Contexts: Retrieval-Augmented Domain Adaptation via In-Context Learning Q Long, W Wang, SJ Pan EMNLP 2023, 6525--6542, 2023 | 11 | 2023 |
QA4IE: A question answering based system for document-level general information extraction L Qiu, D Ru, Q Long, W Zhang, Y Yu IEEE Access 8, 29677-29689, 2020 | 8 | 2020 |
Decomposing Label Space, Format and Discrimination: Rethinking How LLMs Respond and Solve Tasks via In-Context Learning Q Long, Y Wu, W Wang, SJ Pan arXiv preprint arXiv:2404.07546, 2024 | 5 | 2024 |
T2I-FactualBench: Benchmarking the Factuality of Text-to-Image Models with Knowledge-Intensive Concepts Z Huang, W He, Q Long, Y Wang, H Li, Z Yu, F Shu, L Chen, H Jiang, ... arXiv preprint arXiv:2412.04300, 2024 | | 2024 |
Decomposition Dilemmas: Does Claim Decomposition Boost or Burden Fact-Checking Performance? Q Hu, Q Long, W Wang arXiv preprint arXiv:2411.02400, 2024 | | 2024 |
Large Language Models Know What Makes Exemplary Contexts Q Long, J Chen, W Wang, SJ Pan arXiv preprint arXiv:2408.07505, 2024 | | 2024 |
Does In-Context Learning Really Learn? Rethinking How Large Language Models Respond and Solve Tasks via In-Context Learning Q Long, Y Wu, W Wang, SJ Pan First Conference on Language Modeling, 2024 | | 2024 |