Folgen
Vinith M. Suriyakumar
Titel
Zitiert von
Zitiert von
Jahr
Chasing Your Long Tails: Differentially Private Prediction in Health Care Settings
VM Suriyakumar, N Papernot, A Goldenberg, M Ghassemi
ACM Conference on Fairness, Accountability, and Transparency (FAccT) 2021, 2020
772020
Can You Fake It Until You Make It?: Impacts of Differentially Private Synthetic Data on Downstream Classification Fairness
V Cheng, VM Suriyakumar, N Dullerud, S Joshi, M Ghassemi
ACM Conference on Fairness, Accountability, and Transparency (FAccT) 2021, 2020
632020
Public Data-Assisted Mirror Descent for Private Model Training
E Amid, A Ganesh, R Matthews, S Ramaswamy, S Song, T Steinke, ...
https://arxiv.org/abs/2112.00193, 2021
592021
One-shot empirical privacy estimation for federated learning
G Andrew, P Kairouz, S Oh, A Oprea, HB McMahan, VM Suriyakumar
arXiv preprint arXiv:2302.03098, 2023
312023
Algorithms that Approximate Data Removal: New Results and Limitations
VM Suriyakumar, AC Wilson
NeurIPS 2022, 2022
242022
When personalization harms: Reconsidering the use of group attributes in prediction
VM Suriyakumar, M Ghassemi, B Ustun
arXiv preprint arXiv:2206.02058, 2022
202022
Algorithmic Pluralism: A Structural Approach To Equal Opportunity
S Jain, V Suriyakumar, K Creel, A Wilson
The 2024 ACM Conference on Fairness, Accountability, and Transparency, 197-206, 2024
92024
When personalization harms performance: reconsidering the use of group attributes in prediction
VM Suriyakumar, M Ghassemi, B Ustun
International Conference on Machine Learning, 33209-33228, 2023
62023
Using Generative Models for Pediatric wbMRI
A Chang, VM Suriyakumar, A Moturu, N Tewattanarat, A Doria, ...
Medical Imaging in Deep Learning, 2020
62020
Open-source software for collision detection in external beam radiation therapy
VM Suriyakumar, R Xu, C Pinter, G Fichtinger
Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and …, 2017
62017
Challenges of differentially private prediction in healthcare settings
VM Suriyakumar, N Papernot, A Goldenberg, M Ghassemi
Proceedings of the IJCAI 2021 Workshop on AI for Social Good, 2021
42021
Architecture-level modeling of photonic deep neural network accelerators
T Andrulis, GI Chaudhry, VM Suriyakumar, JS Emer, V Sze
arXiv preprint arXiv:2405.07266, 2024
22024
Unstable Unlearning: The Hidden Risk of Concept Resurgence in Diffusion Models
VM Suriyakumar, R Alur, A Sekhari, M Raghavan, AC Wilson
2024
Leveraging Public Data in Training Neural Networks with Private Mirror Descent
OD Thakkar, E Amid, A Ganesh, R Mathews, S Ramaswamy, S Song, ...
US Patent App. 17/937,825, 2023
2023
Private Multi-Winner Voting for Machine Learning
A Dziedzic, CA Choquette-Choo, N Dullerud, VM Suriyakumar, ...
arXiv preprint arXiv:2211.15410, 2022
2022
3D Reasoning for Unsupervised Anomaly Detection in Pediatric WbMRI
A Chang, V Suriyakumar, A Moturu, J Tu, N Tewattanarat, S Joshi, A Doria, ...
arXiv preprint arXiv:2103.13497, 2021
2021
The Revealed Preferences of Pre-authorized Licenses and Their Ethical Implications for Generative Models
VM Suriyakumar, P Menell, D Hadfield-Menell, A Wilson
Limits of Algorithmic Stability for Distributional Generalization
N Hulkund, VM Suriyakumar, TW Killian, M Ghassemi
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–18