Folgen
David Rosenberger
David Rosenberger
Bestätigte E-Mail-Adresse bei fu-berlin.de
Titel
Zitiert von
Zitiert von
Jahr
Comparison of iterative inverse coarse-graining methods
D Rosenberger, M Hanke, NFA van der Vegt
The European Physical Journal Special Topics 225, 1323-1345, 2016
492016
Addressing the temperature transferability of structure based coarse graining models
D Rosenberger, NFA van der Vegt
Physical Chemistry Chemical Physics 20 (9), 6617-6628, 2018
452018
Modeling of peptides with classical and novel machine learning force fields: A comparison
D Rosenberger, JS Smith, AE Garcia
The Journal of Physical Chemistry B 125 (14), 3598-3612, 2021
422021
Transferability of local density-assisted implicit solvation models for homogeneous fluid mixtures
D Rosenberger, T Sanyal, MS Shell, NFA van der Vegt
Journal of Chemical Theory and Computation 15 (5), 2881-2895, 2019
252019
Machine learning of consistent thermodynamic models using automatic differentiation
D Rosenberger, K Barros, TC Germann, N Lubbers
Physical Review E 105 (4), 045301, 2022
202022
Multiscale simulation of plasma flows using active learning
A Diaw, K Barros, J Haack, C Junghans, B Keenan, YW Li, D Livescu, ...
Physical Review E 102 (2), 023310, 2020
202020
Slicing and dicing: Optimal coarse-grained representation to preserve molecular kinetics
W Yang, C Templeton, D Rosenberger, A Bittracher, F Nüske, F Noé, ...
ACS Central Science 9 (2), 186-196, 2023
182023
Phase equilibria modeling with systematically coarse-grained models—A comparative study on state point transferability
G Deichmann, M Dallavalle, D Rosenberger, NFA van der Vegt
The Journal of Physical Chemistry B 123 (2), 504-515, 2018
182018
Evaluating diffusion and the thermodynamic factor for binary ionic mixtures
D Rosenberger, N Lubbers, TC Germann
Physics of Plasmas 27 (10), 2020
162020
Relative entropy indicates an ideal concentration for structure-based coarse graining of binary mixtures
D Rosenberger, NFA van der Vegt
Physical Review E 99 (5), 053308, 2019
52019
Peering inside the black box: Learning the relevance of many-body functions in Neural Network potentials
K Bonneau, J Lederer, C Templeton, D Rosenberger, KR Müller, ...
arXiv preprint arXiv:2407.04526, 2024
32024
VOTCA: multiscale frameworks for quantum and classical simulations in soft matter
B Baumeier, J Wehner, N Renaud, FZ Ruiz, R Halver, P Madhikar, ...
Journal of Open Source Software 9 (LA-UR-24-25313), 2024
12024
Biradicals based on PROXYL Containing Building Blocks for Efficient Dynamic Nuclear Polarization in Biotolerant Media
K Herr, MV Höfler, H Heise, F Aussenac, F Kornemann, D Rosenberger, ...
Journal of Magnetic Resonance Open, 100152, 2024
2024
Dynamic framework for large-scale modeling of membranes and peripheral proteins.
M Sadeghi, D Rosenberger
Methods in Enzymology 701, 457-514, 2024
2024
T cell interaction partners of DHHC20
D Haxhiraj, B Kuropka, E Brencher, D Rosenberger, H Brandt, D Speck, ...
bioRxiv, 2024.02. 14.580290, 2024
2024
Bottom-up coarse-graining scheme for the preservation of relevant slow degrees of freedom in soft materials.
D Rosenberger, F Noe, C Clementi, A Bittracher, C Templeton, W Yang, ...
APS March Meeting Abstracts 2023, S17. 007, 2023
2023
Multiscale Simulation of Plasma Flows Using Active Learning
J Haack, A Diaw, K Barros, C Junghans, B Keenan, YW Li, D Livescu, ...
APS Division of Plasma Physics Meeting Abstracts 2020, NO05. 011, 2020
2020
From the bottom up-A systematic study of structure based coarse graining approaches
D Rosenberger
TUprints, 2019
2019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–18