Folgen
Weihua Li / 李巍华
Weihua Li / 李巍华
Prof. with School of Mechanical & Automotive Engineering, South China University of Technology
Bestätigte E-Mail-Adresse bei scut.edu.cn
Titel
Zitiert von
Zitiert von
Jahr
Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
Z Chen, W Li
IEEE Transactions on instrumentation and measurement 66 (7), 1693-1702, 2017
9032017
A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges
W Li, R Huang, J Li, Y Liao, Z Chen, G He, R Yan, K Gryllias
Mechanical Systems and Signal Processing 167, 108487, 2022
6092022
State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
F Yang, W Li, C Li, Q Miao
Energy 175, 66-75, 2019
4582019
A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks
Z Chen, A Mauricio, W Li, K Gryllias
Mechanical Systems and Signal Processing 140, 106683, 2020
4032020
State-of-charge estimation of lithium-ion batteries using LSTM and UKF
F Yang, S Zhang, W Li, Q Miao
Energy 201, 117664, 2020
3672020
Mechanical fault diagnosis using convolutional neural networks and extreme learning machine
Z Chen, K Gryllias, W Li
Mechanical systems and signal processing 133, 106272, 2019
3432019
Bearing performance degradation assessment using long short-term memory recurrent network
B Zhang, S Zhang, W Li
Computers in Industry 106, 14-29, 2019
3232019
Intelligent fault diagnosis for rotary machinery using transferable convolutional neural network
Z Chen, K Gryllias, W Li
IEEE Transactions on Industrial Informatics 16 (1), 339-349, 2019
2972019
Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery
Z Chen, G He, J Li, Y Liao, K Gryllias, W Li
IEEE Transactions on Instrumentation and Measurement 69 (11), 8702-8712, 2020
2442020
Deep decoupling convolutional neural network for intelligent compound fault diagnosis
R Huang, Y Liao, S Zhang, W Li
Ieee Access 7, 1848-1858, 2018
1952018
Deep adversarial capsule network for compound fault diagnosis of machinery toward multidomain generalization task
R Huang, J Li, Y Liao, J Chen, Z Wang, W Li
IEEE Transactions on Instrumentation and Measurement 70, 1-11, 2020
1862020
A two-stage transfer adversarial network for intelligent fault diagnosis of rotating machinery with multiple new faults
J Li, R Huang, G He, Y Liao, Z Wang, W Li
IEEE/ASME Transactions on Mechatronics 26 (3), 1591-1601, 2020
1842020
A novel weighted adversarial transfer network for partial domain fault diagnosis of machinery
W Li, Z Chen, G He
IEEE Transactions on Industrial Informatics 17 (3), 1753-1762, 2020
1662020
Deep semisupervised domain generalization network for rotary machinery fault diagnosis under variable speed
Y Liao, R Huang, J Li, Z Chen, W Li
IEEE Transactions on Instrumentation and Measurement 69 (10), 8064-8075, 2020
1662020
A multi-source weighted deep transfer network for open-set fault diagnosis of rotary machinery
Z Chen, Y Liao, J Li, R Huang, L Xu, G Jin, W Li
IEEE Transactions on Cybernetics 53 (3), 1982-1993, 2022
1292022
Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective
J Chen, R Huang, Z Chen, W Mao, W Li
Mechanical Systems and Signal Processing 193, 110239, 2023
1232023
A deep adversarial transfer learning network for machinery emerging fault detection
J Li, R Huang, G He, S Wang, G Li, W Li
IEEE Sensors Journal 20 (15), 8413-8422, 2020
1212020
Semisupervised distance-preserving self-organizing map for machine-defect detection and classification
W Li, S Zhang, G He
IEEE Transactions on Instrumentation and Measurement 62 (5), 869-879, 2013
1132013
A robust weight-shared capsule network for intelligent machinery fault diagnosis
R Huang, J Li, S Wang, G Li, W Li
IEEE Transactions on Industrial Informatics 16 (10), 6466-6475, 2020
1112020
Federated transfer learning for bearing fault diagnosis with discrepancy-based weighted federated averaging
J Chen, J Li, R Huang, K Yue, Z Chen, W Li
IEEE Transactions on Instrumentation and Measurement 71, 1-11, 2022
1102022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20